820 research outputs found

    Discovery and evolution of the new black hole candidate Swift J1539.2-6227 during its 2008 outburst

    Get PDF
    We report on the discovery by the Swift Gamma-Ray Burst Explorer of the black hole candidate Swift J1539.2-6227 and the subsequent course of an outburst beginning in November 2008 and lasting at least seven months. The source was discovered during normal observations with the Swift Burst Alert Telescope (BAT) on 2008 November 25. An extended observing campaign with the Rossi X-Ray Timing Explorer (RXTE) and Swift provided near-daily coverage over 176 days, giving us a good opportunity to track the evolution of spectral and timing parameters with fine temporal resolution through a series of spectral states. The source was first detected in a hard state during which strong low-frequency quasi-periodic oscillations (QPOs) were detected. The QPOs persisted for about 35 days and a signature of the transition from the hard to soft intermediate states was seen in the timing data. The source entered a short-lived thermal state about 40 days after the start of the outburst. There were variations in spectral hardness as the source flux declined and returned to a hard state at the end of the outburst. The progression of spectral states and the nature of the timing features provide strong evidence that Swift J1539.2-6227 is a candidate black hole in a low-mass X-ray binary system.Comment: Accepted by the Astrophysical Journa

    Swift/XRT orbital monitoring of the candidate supergiant fast X-ray transient IGR J17354-3255

    Full text link
    We report on the Swift/X-ray Telescope (XRT) monitoring of the field of view around the candidate supergiant fast X-ray transient (SFXT) IGR J17354-3255, which is positionally associated with the AGILE/GRID gamma-ray transient AGL J1734-3310. Our observations, which cover 11 days for a total on-source exposure of about 24 ks, span 1.2 orbital periods (P_orb=8.4474 d) and are the first sensitive monitoring of this source in the soft X-rays. These new data allow us to exploit the timing variability properties of the sources in the field to unambiguously identify the soft X-ray counterpart of IGR J17354-3255. The soft X-ray light curve shows a moderate orbital modulation and a dip. We investigated the nature of the dip by comparing the X-ray light curve with the prediction of the Bondi-Hoyle-Lyttleton accretion theory, assuming both spherical and nonspherical symmetry of the outflow from the donor star. We found that the dip cannot be explained with the X-ray orbital modulation. We propose that an eclipse or the onset of a gated mechanism is the most likely explanation for the observed light curve.Comment: Accepted for publication in Astronomy and Astrophysics. 9 page

    Long-term variability of AGN at hard X-rays

    Get PDF
    Variability at all observed wavelengths is a distinctive property of AGN. Hard X-rays provide us with a view of the innermost regions of AGN, mostly unbiased by absorption along the line of sight. Swift/BAT offers the unique opportunity to follow, on time scales of days to years and with a regular sampling, the 14-195 keV emission of the largest AGN sample available up to date for this kind of investigation. We study the amplitude of the variations, and their dependence on sub-class and on energy, for a sample of 110 radio quiet and radio loud AGN selected from the BAT 58-month survey. About 80% of the AGN in the sample are found to exhibit significant variability on months to years time scales, radio loud sources being the most variable. The amplitude of the variations and their energy dependence are incompatible with variability being driven at hard X-rays by changes of the absorption column density. In general, the variations in the 14-24 and 35-100 keV bands are well correlated, suggesting a common origin of the variability across the BAT energy band. However, radio quiet AGN display on average 10% larger variations at 14-24 keV than at 35-100 keV and a softer-when-brighter behavior for most of the Seyfert galaxies with detectable spectral variability on month time scale. In addition, sources with harder spectra are found to be more variable than softer ones. These properties are generally consistent with a variable power law continuum, in flux and shape, pivoting at energies >~ 50 keV, to which a constant reflection component is superposed. When the same time scales are considered, the timing properties of AGN at hard X-rays are comparable to those at lower energies, with at least some of the differences possibly ascribable to components contributing differently in the two energy domains (e.g., reflection, absorption).Comment: 17 pages, 11 figures, accepted for publication in A&

    Discovery of the accretion-powered millisecond pulsar SWIFT J1756.9-2508 with a low-mass companion

    Get PDF
    We report on the discovery by the Swift Gamma-Ray Burst Explorer of the eighth known transient accretion-powered millisecond pulsar, SWIFT J1756.9-2508, as part of routine observations with the Swift Burst Alert Telescope hard X-ray transient monitor. The pulsar was subsequently observed by both the X-Ray Telescope on Swift and the Rossi X-Ray Timing Explorer Proportional Counter Array. It has a spin frequency of 182 Hz (5.5 ms) and an orbital period of 54.7 minutes. The minimum companion mass is between 0.0067 and 0.0086 solar masses, depending on the mass of the neutron star, and the upper limit on the mass is 0.030 solar masses (95% confidence level). Such a low mass is inconsistent with brown dwarf models, and comparison with white dwarf models suggests that the companion is a He-dominated donor whose thermal cooling has been at least modestly slowed by irradiation from the accretion flux. No X-ray bursts, dips, eclipses or quasi-periodic oscillations were detected. The current outburst lasted approximately 13 days and no earlier outbursts were found in archival data.Comment: 13 pages, 2 figures, accepted by Astrophysical Journal Letter

    Swift observations of the SFXT SAX J1818.6-1703 in outburst

    Full text link
    We present the Swift observations of the supergiant fast X-ray transient (SFXT) SAX J1818.6-1703 collected during the most recent outburst, which occurred on May 6 2009. In particular, we present broad-band spectroscopic and timing analysis as well as a Swift/XRT light curve that spans more than two weeks of observations. The broad-band spectral models and length of the outburst resemble those of the prototype of the SFXT class, XTE J1739-302, further confirming SAX J1818.6-1703 as a member of this class.Comment: Proceedings of 'X-Ray Astronomy 2009, Present Status, multiwavelength approach and future perspectives', September 7 - 11, 2009, Bologna, Ital

    Two years of monitoring Supergiant Fast X-ray Transients with Swift

    Full text link
    We present two years of intense Swift monitoring of three SFXTs, IGR J16479-4514, XTE J1739-302, and IGR J17544-2619 (since October 2007). Out-of-outburst intensity-based X-ray (0.3-10keV) spectroscopy yields absorbed power laws with by hard photon indices (G~1-2). Their outburst broad-band (0.3-150 keV) spectra can be fit well with models typically used to describe the X-ray emission from accreting NSs in HMXBs. We assess how long each source spends in each state using a systematic monitoring with a sensitive instrument. These sources spend 3-5% of the total in bright outbursts. The most probable flux is 1-2E-11 erg cm^{-2} s^{-1} (2-10 keV, unabsorbed), corresponding to luminosities in the order of a few 10^{33} to 10^{34} erg s^{-1} (two orders of magnitude lower than the bright outbursts). The duty-cycle of inactivity is 19, 39, 55%, for IGR J16479-4514, XTE J1739-302, and IGR J17544-2619, respectively. We present a complete list of BAT on-board detections further confirming the continued activity of these sources. This demonstrates that true quiescence is a rare state, and that these transients accrete matter throughout their life at different rates. X-ray variability is observed at all timescales and intensities we can probe. Superimposed on the day-to-day variability is intra-day flaring which involves variations up to one order of magnitude that can occur down to timescales as short as ~1ks, and whichcan be explained by the accretion of single clumps composing the donor wind with masses M_cl~0.3-2x10^{19} g. (Abridged)Comment: Accepted for publication in MNRAS. 17 pages, 11 figures, 8 table
    corecore