1,547 research outputs found

    Motion of Isolated bodies

    Get PDF
    It is shown that sufficiently smooth initial data for the Einstein-dust or the Einstein-Maxwell-dust equations with non-negative density of compact support develop into solutions representing isolated bodies in the sense that the matter field has spatially compact support and is embedded in an exterior vacuum solution

    Conjugate (solid/fluid) computational fluid dynamics analysis of the space shuttle solid rocket motor nozzle/case and case field joints

    Get PDF
    Three-dimensional, conjugate (solid/fluid) heat transfer analyses of new designs of the Solid Rocket Motor (SRM) nozzle/case and case field joints are described. The main focus was to predict the consequences of multiple rips (or debonds) in the ambient cure adhesive packed between the nozzle/case joint surfaces and the bond line between the mating field joint surfaces. The models calculate the transient temperature responses of the various materials neighboring postulated flow/leakpaths into, past, and out from the nozzle/case primary O-ring cavity and case field capture O-ring cavity. These results were used to assess if the design was failsafe (i.e., no potential O-ring erosion) and reusable (i.e., no excessive steel temperatures). The models are adaptions and extensions of the general purpose PHOENICS fluid dynamics code. A non-orthogonal coordinate system was employed and 11,592 control cells for the nozzle/case and 20,088 for the case field joints are used with non-uniform distribution. Physical properties of both fluid and solids are temperature dependent. A number of parametric studies were run for both joints with results showing temperature limits for reuse for the steel case on the nozzle joint being exceeded while the steel case temperatures for the field joint were not. O-ring temperatures for the nozzle joint predicted erosion while for the field joint they did not

    Citizenship, Values, & Cultural Concerns: What Americans Want From Immigration Reform

    Get PDF
    In February 2013, Public Religion Research Institute (PRRI), in partnership with the Brookings Institution, conducted one of the largest surveys ever fielded on immigration policy, immigrants, and religious and cultural changes in the U.S. The survey of nearly 4,500 American adults explores the many divisions -- political, religious, ethnic, geographical, and generational -- within the nation over core values and their relationship to immigration. The new survey also tracks key questions from surveys conducted by PRRI in 2010-2011. This report presents the results of these surveys

    Measuring Muscle Mass and Strength in Obesity:A Review of Various Methods

    Get PDF
    Lower muscle mass in populations with obesity is associated obesity-related diseases like hypertension and type 2 diabetes mellitus. Bariatric surgery leads to sustained weight loss. During the weight reduction, loss of muscle should be minimized. Thus reliable quantification of muscle mass is much needed and therefore the also the need for validated methods. Imaging methods, magnetic resonance imaging and computed tomography scan, have been the gold standard for many years. However, these methods are costly and have limitations such as the maximum weight. Dual-energy X-ray absorptiometry is currently the most used alternative. Other, less expensive methods are very limited in their validation in populations with morbid obesity. This narrative review summarizes the current knowledge regarding measuring muscle mass and strength in obesity

    Parametrically Excited Surface Waves: Two-Frequency Forcing, Normal Form Symmetries, and Pattern Selection

    Get PDF
    Motivated by experimental observations of exotic standing wave patterns in the two-frequency Faraday experiment, we investigate the role of normal form symmetries in the pattern selection problem. With forcing frequency components in ratio m/n, where m and n are co-prime integers, there is the possibility that both harmonic and subharmonic waves may lose stability simultaneously, each with a different wavenumber. We focus on this situation and compare the case where the harmonic waves have a longer wavelength than the subharmonic waves with the case where the harmonic waves have a shorter wavelength. We show that in the former case a normal form transformation can be used to remove all quadratic terms from the amplitude equations governing the relevant resonant triad interactions. Thus the role of resonant triads in the pattern selection problem is greatly diminished in this situation. We verify our general results within the example of one-dimensional surface wave solutions of the Zhang-Vinals model of the two-frequency Faraday problem. In one-dimension, a 1:2 spatial resonance takes the place of a resonant triad in our investigation. We find that when the bifurcating modes are in this spatial resonance, it dramatically effects the bifurcation to subharmonic waves in the case of forcing frequencies are in ratio 1/2; this is consistent with the results of Zhang and Vinals. In sharp contrast, we find that when the forcing frequencies are in ratio 2/3, the bifurcation to (sub)harmonic waves is insensitive to the presence of another spatially-resonant bifurcating mode.Comment: 22 pages, 6 figures, late

    Electrical Control of Plasmon Resonance with Graphene

    Full text link
    Surface plasmon, with its unique capability to concentrate light into sub-wavelength volume, has enabled great advances in photon science, ranging from nano-antenna and single-molecule Raman scattering to plasmonic waveguide and metamaterials. In many applications it is desirable to control the surface plasmon resonance in situ with electric field. Graphene, with its unique tunable optical properties, provides an ideal material to integrate with nanometallic structures for realizing such control. Here we demonstrate effective modulation of the plasmon resonance in a model system composed of hybrid graphene-gold nanorod structure. Upon electrical gating the strong optical transitions in graphene can be switched on and off, which leads to significant modulation of both the resonance frequency and quality factor of plasmon resonance in gold nanorods. Hybrid graphene-nanometallic structures, as exemplified by this combination of graphene and gold nanorod, provide a general and powerful way for electrical control of plasmon resonances. It holds promise for novel active optical devices and plasmonic circuits at the deep subwavelength scale

    Lack of a functioning P2X7 receptor leads to increased susceptibility to toxoplasmic ileitis

    Get PDF
    Background: Oral infection of C57BL/6J mice with the protozoan parasite Toxoplasma gondii leads to a lethal inflammatory ileitis. Principal Findings: Mice lacking the purinergic receptor P2X7R are acutely susceptible to toxoplasmic ileitis, losing significantly more weight than C57BL/6J mice and exhibiting much greater intestinal inflammatory pathology in response to infection with only 10 cysts of T. gondii. This suscep-tibility is not dependent on the ability of P2X7R-deficient mice to control the parasite, which they accomplish just as efficiently as C57BL/6J mice. Rather, susceptibility is associated with elevated ileal concentrations of pro-inflammatory cytokines, reactive nitrogen interme-diates and altered regulation of elements of NFκB activation in P2X7R-deficient mice. Conclusions: Our data support the thesis that P2X7R, a well-documented activator of pro-inflammatory cytokine production, also plays an important role in the regulation of intestinal inflammation
    corecore