294 research outputs found

    Genome-based in silico detection of putative manganese transport systems in Lactobacillus plantarum and their genetic analysis

    Get PDF
    Manganese serves an important function in Lactobacillus plantarum in protection against oxidative stress and this bacterium can accumulate Mn2+ up to millimolar levels intracellularly. Although the physiological role of Mn2+ and the uptake of this metal ion have been well documented, the only uptake system described so far for this bacterium is the Mn2+- and Cd2+-specific P-type ATPase (MntA). Recently, the genome of L. plantarum WCFS1 has been sequenced allowing in silico detection of genes potentially encoding Mn2+ transport systems, using established microbial Mn2+ transporters as the query sequence. This genome analysis revealed that L. plantarum WCFS1 encodes, besides the previously described mntA gene, an ABC transport system (mtsCBA) and three genes encoding Nramp transporters (mntH1, mntH2 and mntH3). The expression of three (mtsCBA, mntH1 and mntH2) of the five transport systems was specifically derepressed or induced upon Mn2+ limitation, supporting their role in Mn2+ homeostasis in L. plantarum. However, in contrast to previous reports, mntA expression remains below detection levels in both Northern and real-time RT-PCR analysis in both Mn2+ excess and starvation conditions. Growth of WCFS1 derivatives mutated in mntA, mtsA or mntH2, or both mtsA and mntH2 appears unaffected under Mn2+ excess or Mn2+ limitation. Moreover, intracellular Mn2+ concentrations remained unaltered in these mutants compared to the wild-type. This may suggest that this species is highly adaptive in response to inactivation of these genes or, alternatively, that other transporters that have not yet been identified as Mn2+ transporters in bacteria are involved in Mn2+ homeostasis in L. plantaru

    The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria

    Get PDF
    Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel

    Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells

    Get PDF
    Peptidoglycans provide bacterial cell walls with mechanical strength. The spatial organization of peptidoglycan has previously been difficult to study. Here, atomic force microscopy, together with cells carrying mutations in cell-wall polysaccharides, has allowed an in-depth study of these molecules

    QTL mapping of improving forage maize starch degradability in European elite maize germplasm

    Get PDF
    Improving maize starch content is of great importance for both forage and grain yield. In this study, 13 starch degradability traits were analyzed including percentage of the seedling area, floury endosperm, hard endosperm of total grain area, percentage of the floury endosperm surface, and vitreousness ratio surface hard: floury endosperm surface, etc. We mapped quantitative trait loci (QTL) in a biparental population of 309 doubled haploid lines (DHL) based on field phenotyping at two locations. A genetic linkage map was constructed using 168 SSR (simple sequence repeat) markers, which covered 1508 cM of the maize genome, with an average distance of 9.0 cM. Close phenotypic and genotypic correlations were found for all traits, and were all statistically significant (P = 0.01) at two locations. Major QTL for more than two traits were detected, especially in two regions in bins 4.05-4.06 and 7.04-7.05, associated with 13 and 9 traits, respectively. This study contributes to marker assisted breeding and also to fine mapping candidate genes associated with maize starch degradability

    Enterobactin-Mediated Delivery of ÎČ-Lactam Antibiotics Enhances Antibacterial Activity against Pathogenic Escherichia coli

    Get PDF
    The design, synthesis, and characterization of enterobactin–antibiotic conjugates, hereafter Ent-Amp/Amx, where the ÎČ-lactam antibiotics ampicillin (Amp) and amoxicillin (Amx) are linked to a monofunctionalized enterobactin scaffold via a stable poly(ethylene glycol) linker are reported. Under conditions of iron limitation, these siderophore-modified antibiotics provide enhanced antibacterial activity against Escherichia coli strains, including uropathogenic E. coli CFT073 and UTI89, enterohemorrhagic E. coli O157:H7, and enterotoxigenic E. coli O78:H11, compared to the parent ÎČ-lactams. Studies with E. coli K-12 derivatives defective in ferric enterobactin transport reveal that the enhanced antibacterial activity observed for this strain requires the outer membrane ferric enterobactin transporter FepA. A remarkable 1000-fold decrease in minimum inhibitory concentration (MIC) value is observed for uropathogenic E. coli CFT073 relative to Amp/Amx, and time-kill kinetic studies demonstrate that Ent-Amp/Amx kill this strain more rapidly at 10-fold lower concentrations than the parent antibiotics. Moreover, Ent-Amp and Ent-Amx selectively kill E. coli CFT073 co-cultured with other bacterial species such as Staphylococcus aureus, and Ent-Amp exhibits low cytotoxicity against human T84 intestinal cells in both the apo and iron-bound forms. These studies demonstrate that the native enterobactin platform provides a means to effectively deliver antibacterial cargo across the outer membrane permeability barrier of Gram-negative pathogens utilizing enterobactin for iron acquisition.Pacific Southwest Regional Center of Excellence for Biodefense and Emerging Infectious DiseaseKinship Foundation. Searle Scholars ProgramMassachusetts Institute of Technology. Department of Chemistr

    Molecular and Electrophysiological Characterization of a Novel Cation Channel of Trypanosoma cruzi

    Get PDF
    We report the identification, functional expression, purification, reconstitution and electrophysiological characterization of a novel cation channel (TcCat) from Trypanosoma cruzi, the etiologic agent of Chagas disease. This channel is potassium permeable and shows inward rectification in the presence of magnesium. Western blot analyses with specific antibodies indicated that the protein is expressed in the three main life cycle stages of the parasite. Surprisingly, the parasites have the unprecedented ability to rapidly change the localization of the channel when they are exposed to different environmental stresses. TcCat rapidly translocates to the tip of the flagellum when trypomastigotes are submitted to acidic pH, to the plasma membrane when epimastigotes are submitted to hyperosmotic stress, and to the cell surface when amastigotes are released to the extracellular medium. Pharmacological block of TcCat activity also resulted in alterations in the trypomastigotes ability to respond to hyperosmotic stress. We also demonstrate the feasibility of purifying and reconstituting a functional ion channel from T. cruzi after recombinant expression in bacteria. The peculiar characteristics of TcCat could be important for the development of specific inhibitors with therapeutic potential against trypanosomes

    Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp

    Get PDF
    [EN] Proanthocyanidins (PAs), or condensed tannins, are powerful antioxidants that remove harmful free oxygen radicals from cells. To engineer the anthocyanin and proanthocyanidin biosynthetic pathways to de novo produce PAs in two Nicotiana species, we incorporated four transgenes to the plant chassis. We opted to perform a simultaneous transformation of the genes linked in a multigenic construct rather than classical breeding or retransformation approaches. We generated a GoldenBraid 2.0 multigenic construct containing two Antirrhinum majus transcription factors (AmRosea1 and AmDelila) to upregulate the anthocyanin pathway in combination with two Medicago truncatula genes (MtLAR and MtANR) to produce the enzymes that will derivate the biosynthetic pathway to PAs production. Transient and stable transformation of Nicotiana benthamiana and Nicotiana tabacum with the multigenic construct were respectively performed. Transient expression experiments in N. benthamiana showed the activation of the anthocyanin pathway producing a purple color in the agroinfiltrated leaves and also the effective production of 208.5 nmol (-) catechin/g FW and 228.5 nmol (-) epicatechin/g FW measured by the p-dimethylaminocinnamaldehyde (DMACA) method. The integration capacity of the four transgenes, their respective expression levels and their heritability in the second generation were analyzed in stably transformed N. tabacum plants. DMACA and phoroglucinolysis/HPLC-MS analyses corroborated the activation of both pathways and the effective production of PAs in T0 and T1 transgenic tobacco plants up to a maximum of 3.48 mg/g DW. The possible biotechnological applications of the GB2.0 multigenic approach in forage legumes to produce "bloatsafe" plants and to improve the efficiency of conversion of plant protein into animal protein (ruminal protein bypass) are discussed.This work was supported by grants BIO2012-39849-C02-01 and BIO2016-75485-R from the Spanish Ministry of Economy and Competitiveness (MINECO) (http://www.idi.mineco.gob.es/portal/site/MICINN) to LAC and a fellowship of the JAE-CSIC program to SF. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Fresquet-Corrales, S.; Roque Mesa, EM.; SarriĂłn-Perdigones, A.; Rochina, M.; LĂłpez-Gresa, MP.; DĂ­az-Mula, HM.; Belles Albert, JM.... (2017). Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp. PLoS ONE. 12(9). https://doi.org/10.1371/journal.pone.0184839Se018483912

    Genetic markers associated with resistance to beta-lactam and quinolone antimicrobials in non-typhoidal Salmonella isolates from humans and animals in central Ethiopia

    Get PDF
    Abstract Background Beta-lactam and quinolone antimicrobials are commonly used for treatment of infections caused by non-typhoidal Salmonella (NTS) and other pathogens. Resistance to these classes of antimicrobials has increased significantly in the recent years. However, little is known on the genetic basis of resistance to these drugs in Salmonella isolates from Ethiopia. Methods Salmonella isolates with reduced susceptibility to beta-lactams ( n \u2009=\u200943) were tested for genes encoding for beta-lactamase enzymes, and those resistant to quinolones ( n \u2009=\u200929) for mutations in the quinolone resistance determining region (QRDR) as well as plasmid mediated quinolone resistance (PMQR) genes using PCR and sequencing. Results Beta-lactamase genes ( bla ) were detected in 34 (79.1%) of the isolates. The dominant bla gene was bla TEM, recovered from 33 (76.7%) of the isolates, majority being TEM-1 (24, 72.7%) followed by TEM-57, (10, 30.3%). The bla OXA-10 and bla CTX-M-15 were detected only in a single S. Concord human isolate. Double substitutions in gyr A (Ser83-Phe\u2009+\u2009Asp87-Gly) as well as par C (Thr57-Ser\u2009+\u2009Ser80-Ile) subunits of the quinolone resistance determining region (QRDR) were detected in all S. Kentucky isolates with high level resistance to both nalidixic acid and ciprofloxacin. Single amino acid substitutions, Ser83-Phe ( n \u2009=\u20094) and Ser83-Tyr ( n \u2009=\u20091) were also detected in\ua0the gyr A gene. An isolate of S . Miami susceptible to nalidixic acid but intermediately resistant to ciprofloxacin had Thr57-Ser and an additional novel mutation (Tyr83-Phe) in the par C gene. Plasmid mediated quinolone resistance (PMQR) genes investigated were not detected in any of the isolates. In some isolates with decreased susceptibility to ciprofloxacin and/or nalidixic acid, no mutations in QRDR or PMQR genes were detected. Over half of the quinolone resistant isolates in the current study 17 (58.6%) were also resistant to at least one of the beta-lactam antimicrobials. Conclusion Acquisition of bla TEM was the principal beta-lactamase resistance mechanism and mutations within QRDR of gyr A and par C were the primary mechanism for resistance to quinolones. Further study on extended ..
    • 

    corecore