1,960 research outputs found
Effect of reinforcing submicron SiC particles on the wear of electrolytic NiP coatings Part 1. Uni-directional sliding
As-plated and annealed NiP coatings and composite NiP-SiC coatings were investigated in uni-directional ball-on-disc sliding tests. Abrasive wear was noticed in the case of composite NiP coatings containing submicron SiC particles, whereas in NiP coatings oxidational wear was active. The addition of submicron SiC particles not only increases the hardness of these electrolytic coatings but also hinders the formation of an oxide film in the sliding wear track. As a consequence, the wear loss on as-plated NiP coatings is not markedly reduced by the addition of SiC particles. On the contrary, a heat treatment at 420 °C for 1 h decreases the wear loss on both pure NiP and composite NiP-SiC coatings. During that heat treatment, Ni3P precipitates are formed in the NiP matrix and owing to this fact, the hardness of both pure NiP and composite NiP-SiC coatings increases. However, the heat treatment of composite NiP-SiC coatings induces the sensitivity for crack formation in the NiP matrix around these SiC particles. As a result, the pull out of SiC particles in the wear track occurs easily during sliding, and the wear loss of composite NiP-SiC coatings remains above the wear loss on NiP coatings
Effect of reinforcing submicron SiC particles on the wear of electrolytic NiP coatings Part 2: Bi-directional sliding
As-plated and heat-treated electrodeposited NiP and composite NiP-SiC coatings were investigated in bi-directional ball-on-disc sliding tests. All tests were performed under gross slip conditions. Heat treatment decreases the wear volume loss during fretting in ambient air for all coatings investigated. Heat-treated NiP coating has a lower wear volume loss compared to composite NiP-SiC coatings for all sliding tests. The wear rate at the bi-directional sliding test was found to be lower relative to the wear rate at uni-directional sliding test
Mixed-Integer Linear Programming Approach for Life-Cycle Carpet Profit
This paper proposes an mixed-integer linear programming (MILP) model to accurately represent a product life-cycle design considering profit maximization. The model that takes into account the effects on the demand lev-el and a measure of the customer utility considering recycled raw materials and prices of the traditional and modular products. Demand functions for traditional and modular products are considered. Given the presence of bilinear terms in the formulation (for example due to the multiplication of product price for the demand), the multi-parametric disaggregation technique is used to obtain a line-ar model. The developed model is applied to a company that produces tradition-al carpets and it wants to manufacture carpets based on a new modular design where recycled materials must be incorporated. The objective of the company is to maximize the total profit taking into account the design specifications and the selling prices for traditional and modular carpets. In addition, the amount of square meters of traditional carpets must be determined and the take-back rate must be considered. The practical behavior of the formulation is analyzed through computational experiments exploring the analyzed case-study.Sociedad Argentina de Informática e Investigación Operativ
Mixed-Integer Linear Programming Approach for Life-Cycle Carpet Profit
This paper proposes an mixed-integer linear programming (MILP) model to accurately represent a product life-cycle design considering profit maximization. The model that takes into account the effects on the demand lev-el and a measure of the customer utility considering recycled raw materials and prices of the traditional and modular products. Demand functions for traditional and modular products are considered. Given the presence of bilinear terms in the formulation (for example due to the multiplication of product price for the demand), the multi-parametric disaggregation technique is used to obtain a line-ar model. The developed model is applied to a company that produces tradition-al carpets and it wants to manufacture carpets based on a new modular design where recycled materials must be incorporated. The objective of the company is to maximize the total profit taking into account the design specifications and the selling prices for traditional and modular carpets. In addition, the amount of square meters of traditional carpets must be determined and the take-back rate must be considered. The practical behavior of the formulation is analyzed through computational experiments exploring the analyzed case-study.Sociedad Argentina de Informática e Investigación Operativ
Mixed-Integer Linear Programming Approach for Life-Cycle Carpet Profit
This paper proposes an mixed-integer linear programming (MILP) model to accurately represent a product life-cycle design considering profit maximization. The model that takes into account the effects on the demand lev-el and a measure of the customer utility considering recycled raw materials and prices of the traditional and modular products. Demand functions for traditional and modular products are considered. Given the presence of bilinear terms in the formulation (for example due to the multiplication of product price for the demand), the multi-parametric disaggregation technique is used to obtain a line-ar model. The developed model is applied to a company that produces tradition-al carpets and it wants to manufacture carpets based on a new modular design where recycled materials must be incorporated. The objective of the company is to maximize the total profit taking into account the design specifications and the selling prices for traditional and modular carpets. In addition, the amount of square meters of traditional carpets must be determined and the take-back rate must be considered. The practical behavior of the formulation is analyzed through computational experiments exploring the analyzed case-study.Sociedad Argentina de Informática e Investigación Operativ
Heat Treated NiP–SiC Composite Coatings: Elaboration and Tribocorrosion Behaviour in NaCl Solution
Tribocorrosion behaviour of heat-treated NiP and NiP–SiC composite coatings was investigated in a 0.6 M NaCl solution. The tribocorrosion tests were performed in a linear sliding tribometer with an electrochemical cell interface. It was analyzed the influence of SiC particles dispersion in the NiP matrix on current density developed, on coefficient of friction and on wear volume loss. The results showed that NiP–SiC composite coatings had a lower wear volume loss compared to NiP coatings. However, the incorporation of SiC particles into the metallic matrix affects the current density developed by the system during the tribocorrosion test. It was verified that not only the volume of co-deposited particles (SiC vol.%) but also the number of SiC particles per coating area unit (and consequently the SiC particles size) have made influence on the tribocorrosion behaviour of NiP–SiC composite coatings
Insights on a Hierarchical MFI Zeolite: A Combined Spectroscopic and Catalytic Approach for Exploring the Multilevel Porous System down to the Active Sites
The hierarchization of zeolites to overcome the major drawbacks related to molecular diffusion limitation in micropores is a popular concept in heterogeneous catalysis. Despite the constant increase of new synthesis strategies to produce such hierarchical systems, the deep knowledge of their structural arrangement and how the zeolitic lattice is organized in a multilevel porous system is often missing. This information is essential to design a structure, tuning the porosity and the distribution of easily accessible active sites, and successively controlling the catalytic properties. In the present work, the synthesis of one of the most sophisticated forms of the hierarchical ZSM-5 zeolite has been reproduced, obtaining two multilevel porous materials with different crystallinity degrees, with the final aim of investigating and clarifying the finest features of their active sites. For this purpose, an extended characterization step by means of a unique multitechnique approach has been performed, thus revealing the active site nature, abundance, and distribution. IR spectroscopy with different molecular probes and a targeted catalytic test based on the hydroconversion reaction of n-decane were the toolbox for disclosing how the MFI lattice takes part in the hierarchical structure and how it, working in synergy with the mesoporous system, confers to this material a totally new shape-size selectivity. Merging the information obtained for the synthesized hierarchical zeolite with the characterization results of two reference materials (a mesoporous aluminum-containing MCM-41 and a microporous commercial ZSM-5), it was possible to define an internal and external map of the pore network of this complex and unique molecular sieve, where strong Bronsted acidic sites are located at the mouth of the MFI micropores and, at the same time, exposed at the surface of the mesoporous channels. Hence, the possibility of easily releasing bulky products is ensured and the application possibilities of the MFI lattice are expanded beyond cracking reactions
Reggeon and pion contributions in semi-exclusive diffractive processes at HERA
A detailed analysis of semi-exclusive diffractive processes in e-p DIS at
HERA, with the diffractive final states in the forward direction is presented.
The contributions of the subleading f_2, \omega, a_2, \rho reggeons and the
pion exchanges to the diffractive structure function with the forward proton or
neutron are estimated. It is found that the (a_2,\rho) reggeons are entirely
responsible for the forward neutron production at x_P < 10^{-3}. The \pi N
production in the forward region is estimated using the Deck mechanism. The
significance of this reaction for the processes measured at HERA, especially
with the leading neutron, is discussed.Comment: Strongly revised version accepted for publication in Phys.Rev.D.
Latex, 14 pages with 5 eps figures include
Hard diffraction in hadron--hadron interactions and in photoproduction
Hard single diffractive processes are studied within the framework of the
triple--Pomeron approximation. Using a Pomeron structure function motivated by
Regge--theory we obtain parton distribution functions which do not obey
momentum sum rule. Based on Regge-- factorization cross sections for hard
diffraction are calculated. Furthermore, the model is applied to hard
diffractive particle production in photoproduction and in
interactions.Comment: 13 pages, Latex, 13 uuencoded figure
Search for Early Gamma-ray Production in Supernovae Located in a Dense Circumstellar Medium with the Fermi LAT
Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are
hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV
gamma rays and TeV neutrinos on a time scale of several months. We perform the
first systematic search for gamma-ray emission in Fermi LAT data in the energy
range from 100 MeV to 300 GeV from the ensemble of 147 SNe Type IIn exploding
in dense CSM. We search for a gamma-ray excess at each SNe location in a one
year time window. In order to enhance a possible weak signal, we simultaneously
study the closest and optically brightest sources of our sample in a
joint-likelihood analysis in three different time windows (1 year, 6 months and
3 months). For the most promising source of the sample, SN 2010jl (PTF10aaxf),
we repeat the analysis with an extended time window lasting 4.5 years. We do
not find a significant excess in gamma rays for any individual source nor for
the combined sources and provide model-independent flux upper limits for both
cases. In addition, we derive limits on the gamma-ray luminosity and the ratio
of gamma-ray-to-optical luminosity ratio as a function of the index of the
proton injection spectrum assuming a generic gamma-ray production model.
Furthermore, we present detailed flux predictions based on multi-wavelength
observations and the corresponding flux upper limit at 95% confidence level
(CL) for the source SN 2010jl (PTF10aaxf).Comment: Accepted for publication in ApJ. Corresponding author: A. Franckowiak
([email protected]), updated author list and acknowledgement
- …