163 research outputs found
Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases
We prove approach to thermal equilibrium for the fully Hamiltonian dynamics
of a dynamical Lorentz gas, by which we mean an ensemble of particles moving
through a -dimensional array of fixed soft scatterers that each possess an
internal harmonic or anharmonic degree of freedom to which moving particles
locally couple. We establish that the momentum distribution of the moving
particles approaches a Maxwell-Boltzmann distribution at a certain temperature
, provided that they are initially fast and the scatterers are in a
sufficiently energetic but otherwise arbitrary stationary state of their free
dynamics--they need not be in a state of thermal equilibrium. The temperature
to which the particles equilibrate obeys a generalized equipartition
relation, in which the associated thermal energy is equal to
an appropriately defined average of the scatterers' kinetic energy. In the
equilibrated state, particle motion is diffusive
Classical motion in force fields with short range correlations
We study the long time motion of fast particles moving through time-dependent
random force fields with correlations that decay rapidly in space, but not
necessarily in time. The time dependence of the averaged kinetic energy and
mean-squared displacement is shown to exhibit a large degree of universality;
it depends only on whether the force is, or is not, a gradient vector field.
When it is, p^{2}(t) ~ t^{2/5} independently of the details of the potential
and of the space dimension. Motion is then superballistic in one dimension,
with q^{2}(t) ~ t^{12/5}, and ballistic in higher dimensions, with q^{2}(t) ~
t^{2}. These predictions are supported by numerical results in one and two
dimensions. For force fields not obtained from a potential field, the power
laws are different: p^{2}(t) ~ t^{2/3} and q^{2}(t) ~ t^{8/3} in all dimensions
d\geq 1
Hydrogen Burning of 17-O in Classical Novae
We report on the observation of a previously unknown resonance at
E=194.1+/-0.6 keV (lab) in the 17-O(p,alpha)14-N reaction, with a measured
resonance strength omega_gamma(p,alpha)=1.6+/-0.2 meV. We studied in the same
experiment the 17-O(p,gamma)18-F reaction by an activation method and the
resonance-strength ratio was found to be
omega_gamma(p,alpha)/omega_gamma(p,gamma)=470+/-50. The corresponding
excitation energy in the 18-F compound nucleus was determined to be
5789.8+/-0.3 keV by gamma-ray measurements using the 14-N(alpha,gamma)18-F
reaction. These new resonance properties have important consequences for 17-O
nucleosynthesis and gamma-ray astronomy of classical novae.Comment: 4 pages, 4 figures. Accepted for publication in Physical Review
Letter
Comparison of low--energy resonances in 15N(alpha,gamma)19F and 15O(alpha,gamma)19Ne and related uncertainties
A disagreement between two determinations of Gamma_alpha of the astro-
physically relevant level at E_x=4.378 MeV in 19F has been stated in two recent
papers by Wilmes et al. and de Oliveira et al. In this work the uncertainties
of both papers are discussed in detail, and we adopt the value
Gamma_alpha=(1.5^{+1.5}_{-0.8})10^-9eV for the 4.378 MeV state. In addition,
the validity and the uncertainties of the usual approximations for mirror
nuclei Gamma_gamma(19F) approx Gamma_gamma(19Ne), theta^2_alpha(19F) approx
theta^2_alpha(19Ne) are discussed, together with the resulting uncertainties on
the resonance strengths in 19Ne and on the 15O(alpha,gamma)19Ne rate.Comment: 9 pages, Latex, To appear in Phys. Rev.
Low energy measurement of the 7Be(p,gamma)8B cross section
We have measured the cross section of the 7Be(p,gamma)8B reaction for E_cm =
185.8 keV, 134.7 keV and 111.7 keV using a radioactive 7Be target (132 mCi).
Single and coincidence spectra of beta^+ and alpha particles from 8B and 8Be^*
decay, respectively, were measured using a large acceptance spectrometer. The
zero energy S factor inferred from these data is 18.5 +/- 2.4 eV b and a
weighted mean value of 18.8 +/- 1.7 eV b (theoretical uncertainty included) is
deduced when combining this value with our previous results at higher energies.Comment: Accepted for publication in Phys. Rev. Let
A compilation of charged-particle induced thermonuclear reaction rates
Low-energy cross section data for 86 charged-particle induced reactions involving light (1 less than or equal to Z less than or equal to 14), mostly stable, nuclei are compiled. The corresponding Maxwellian-averaged thermonuclear reaction rates of relevance in astrophysical plasmas at temperatures in the range from 10(6) K to 10(10) K are calculated. These evaluations assume either that the target nuclei are in their ground state, or that the target states are thermally populated following a Maxwell-Boltzmann distribution, except in some cases involving isomeric states. Adopted values complemented with lower and upper limits of the rates are presented in tabular form. Analytical approximations to the adopted rates, as well as to the inverse/direct rate ratios, are provided. (C) 1999 Elsevier Science B.V. All rights reserved
Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues
Funding Information: This study was supported by the Latvian National Research Program BIOMEDICINE. E. Liepinsh was supported by the FP7 project InnovaBalt [grant Nr. 316149]. We would like to thank Dr. Reinis Vilskersts and Gita Dambrova for help with the isolated skeletal muscle experiments. Publisher Copyright: © 2017 The Author(s).Increased plasma concentrations of acylcarnitines (ACs) are suggested as a marker of metabolism disorders. The aim of the present study was to clarify which tissues are responsible for changes in the AC pool in plasma. The concentrations of medium- and long-chain ACs were changing during the fed-fast cycle in rat heart, muscles and liver. After 60 min running exercise, AC content was increased in fasted mice muscles, but not in plasma or heart. After glucose bolus administration in fasted rats, the AC concentrations in plasma decreased after 30 min but then began to increase, while in the muscles and liver, the contents of medium- and long-chain ACs were unchanged or even increased. Only the heart showed a decrease in medium- and long-chain AC contents that was similar to that observed in plasma. In isolated rat heart, but not isolated-contracting mice muscles, the significant efflux of medium- and long-chain ACs was observed. The efflux was reduced by 40% after the addition of glucose and insulin to the perfusion solution. Overall, these results indicate that during fed-fast cycle shifting the heart determines the medium- and long-chain AC profile in plasma, due to a rapid response to the availability of circulating energy substrates.publishersversionPeer reviewe
Rise and Fall of the Spin Alignment in Deep-Inelastic Reactions
Both the magnitude and alignment of the transferred angular momentum in the reaction {sup 165}Ho + {sup 165}Ho have been measured as a function of Q value via continuum {gamma}-ray multiplicity and anisotropy techniques. Two regimes are observed: A low-Q-value regime where the aligned angular momentum component dominates over the random components, and a large-Q-value regime where the random components dominate and decrease the spin alignment
Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes
Cardiomyocytes use glucose as well as fatty acids for ATP production. These substrates are transported into the cell by glucose transporter 4 (GLUT4) and the fatty acid transporter CD36. Besides being located at the sarcolemma, GLUT4 and CD36 are stored in intracellular compartments. Raised plasma insulin concentrations and increased cardiac work will stimulate GLUT4 as well as CD36 to translocate to the sarcolemma. As so far studied, signaling pathways that regulate GLUT4 translocation similarly affect CD36 translocation. During the development of insulin resistance and type 2 diabetes, CD36 becomes permanently localized at the sarcolemma, whereas GLUT4 internalizes. This juxtaposed positioning of GLUT4 and CD36 is important for aberrant substrate uptake in the diabetic heart: chronically increased fatty acid uptake at the expense of glucose. To explain the differences in subcellular localization of GLUT4 and CD36 in type 2 diabetes, recent research has focused on the role of proteins involved in trafficking of cargo between subcellular compartments. Several of these proteins appear to be similarly involved in both GLUT4 and CD36 translocation. Others, however, have different roles in either GLUT4 or CD36 translocation. These trafficking components, which are differently involved in GLUT4 or CD36 translocation, may be considered novel targets for the development of therapies to restore the imbalanced substrate utilization that occurs in obesity, insulin resistance and diabetic cardiomyopathy
- …