research

Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases

Abstract

We prove approach to thermal equilibrium for the fully Hamiltonian dynamics of a dynamical Lorentz gas, by which we mean an ensemble of particles moving through a dd-dimensional array of fixed soft scatterers that each possess an internal harmonic or anharmonic degree of freedom to which moving particles locally couple. We establish that the momentum distribution of the moving particles approaches a Maxwell-Boltzmann distribution at a certain temperature TT, provided that they are initially fast and the scatterers are in a sufficiently energetic but otherwise arbitrary stationary state of their free dynamics--they need not be in a state of thermal equilibrium. The temperature TT to which the particles equilibrate obeys a generalized equipartition relation, in which the associated thermal energy kBTk_{\mathrm B}T is equal to an appropriately defined average of the scatterers' kinetic energy. In the equilibrated state, particle motion is diffusive

    Similar works