6,153 research outputs found
Constructing and exploring wells of energy landscapes
Landscape paradigm is ubiquitous in physics and other natural sciences, but
it has to be supplemented with both quantitative and qualitatively meaningful
tools for analyzing the topography of a given landscape. We here consider
dynamic explorations of the relief and introduce as basic topographic features
``wells of duration and altitude ''. We determine an intrinsic
exploration mechanism governing the evolutions from an initial state in the
well up to its rim in a prescribed time, whose finite-difference approximations
on finite grids yield a constructive algorithm for determining the wells. Our
main results are thus (i) a quantitative characterization of landscape
topography rooted in a dynamic exploration of the landscape, (ii) an
alternative to stochastic gradient dynamics for performing such an exploration,
(iii) a constructive access to the wells and (iv) the determination of some
bare dynamic features inherent to the landscape. The mathematical tools used
here are not familiar in physics: They come from set-valued analysis
(differential calculus of set-valued maps and differential inclusions) and
viability theory (capture basins of targets under evolutionary systems) which
have been developed during the last two decades; we therefore propose a minimal
appendix exposing them at the end of this paper to bridge the possible gap.Comment: 28 pages, submitted to J. Math. Phys -
Existence and uniqueness for Mean Field Games with state constraints
In this paper, we study deterministic mean field games for agents who operate
in a bounded domain. In this case, the existence and uniqueness of Nash
equilibria cannot be deduced as for unrestricted state space because, for a
large set of initial conditions, the uniqueness of the solution to the
associated minimization problem is no longer guaranteed. We attack the problem
by interpreting equilibria as measures in a space of arcs. In such a relaxed
environment the existence of solutions follows by set-valued fixed point
arguments. Then, we give a uniqueness result for such equilibria under a
classical monotonicity assumption
Light hadrons with improved staggered quarks: approaching the continuum limit
We have extended our program of QCD simulations with an improved
Kogut-Susskind quark action to a smaller lattice spacing, approximately 0.09
fm. Also, the simulations with a approximately 0.12 fm have been extended to
smaller quark masses. In this paper we describe the new simulations and
computations of the static quark potential and light hadron spectrum. These
results give information about the remaining dependences on the lattice
spacing. We examine the dependence of computed quantities on the spatial size
of the lattice, on the numerical precision in the computations, and on the step
size used in the numerical integrations. We examine the effects of
autocorrelations in "simulation time" on the potential and spectrum. We see
effects of decays, or coupling to two-meson states, in the 0++, 1+, and 0-
meson propagators, and we make a preliminary mass computation for a radially
excited 0- meson.Comment: 43 pages, 16 figure
K to pi and K to 0 in 2+1 Flavor Partially Quenched Chiral Perturbation Theory
We calculate results for K to pi and K to 0 matrix elements to
next-to-leading order in 2+1 flavor partially quenched chiral perturbation
theory. Results are presented for both the Delta I=1/2 and 3/2 channels, for
chiral operators corresponding to current-current, gluonic penguin, and
electroweak penguin 4-quark operators. These formulas are useful for studying
the chiral behavior of currently available 2+1 flavor lattice QCD results, from
which the low energy constants of the chiral effective theory can be
determined. The low energy constants of these matrix elements are necessary for
an understanding of the Delta I=1/2 rule, and for calculations of
epsilon'/epsilon using current lattice QCD simulations.Comment: 43 pages, 2 figures, uses RevTeX, added and updated reference
Heavy-Light Semileptonic Decays in Staggered Chiral Perturbation Theory
We calculate the form factors for the semileptonic decays of heavy-light
pseudoscalar mesons in partially quenched staggered chiral perturbation theory
(\schpt), working to leading order in , where is the heavy quark
mass. We take the light meson in the final state to be a pseudoscalar
corresponding to the exact chiral symmetry of staggered quarks. The treatment
assumes the validity of the standard prescription for representing the
staggered ``fourth root trick'' within \schpt by insertions of factors of 1/4
for each sea quark loop. Our calculation is based on an existing partially
quenched continuum chiral perturbation theory calculation with degenerate sea
quarks by Becirevic, Prelovsek and Zupan, which we generalize to the staggered
(and non-degenerate) case. As a by-product, we obtain the continuum partially
quenched results with non-degenerate sea quarks. We analyze the effects of
non-leading chiral terms, and find a relation among the coefficients governing
the analytic valence mass dependence at this order. Our results are useful in
analyzing lattice computations of form factors and when the
light quarks are simulated with the staggered action.Comment: 53 pages, 8 figures, v2: Minor correction to the section on finite
volume effects, and typos fixed. Version to be published in Phys. Rev.
Recommended from our members
Order Recall in Verbal Short-Term Memory is Influenced by Semantic Activation
It has recently been suggested that order recall in short-term memory tasks is influenced by the level of activation of items in the lexico-semantic network. According to the Activated Network view, increasing the level of activation of an item would increase the probability of observing a migration of the item toward the beginning of the list (Poirier et al., 2015). We tested this prediction by manipulating the orthographic neighbourhood of to-be-recalled items. In Experiment 1, the first three items of a 7-item list were orthographic neighbours of the target item in Position 5. As predicted, at recall, the target item migrated more toward the beginning of the list than control items. In Experiment 2, all list items were orthographic neighbours of the target item located on Position 4, 5, or 6. Compared to control items, the target item migrated more toward the beginning than the end of the list
Approach of a class of discontinuous dynamical systems of fractional order: existence of the solutions
In this letter we are concerned with the possibility to approach the
existence of solutions to a class of discontinuous dynamical systems of
fractional order. In this purpose, the underlying initial value problem is
transformed into a fractional set-valued problem. Next, the Cellina's Theorem
is applied leading to a single-valued continuous initial value problem of
fractional order. The existence of solutions is assured by a P\'{e}ano like
theorem for ordinary differential equations of fractional order.Comment: accepted IJBC, 5 pages, 1 figur
Recommended from our members
Dissociating visuo-spatial and verbal working memory: It’s all in the features
Echoing many of the themes of the seminal work of Atkinson and Shiffrin (1968), this paper uses the Feature Model (Nairne, 1988, 1990; Neath & Nairne, 1995) to account for performance in working memory tasks. The Brooks verbal and visuo-spatial matrix tasks were performed alone, with articulatory suppression, or with a spatial suppression task; the results produced the expected dissociation. We used Approximate Bayesian Computation techniques to fit the Feature Model to the data and showed that the similarity-based interference process implemented in the model accounted for the data patterns well. We then fit the model to data from Guérard and Tremblay (2008); the latter study produced a double dissociation while calling upon more typical order reconstruction tasks. Again, the model performed well. The findings show that a double dissociation can be modelled without appealing to separate systems for verbal and visuo-spatial processing. The latter findings are significant as the Feature Model had not been used to model this type of dissociation before; importantly, this is also the first time the model is quantitatively fit to data. For the demonstration provided here, modularity was unnecessary if two assumptions were made: (1) the main difference between spatial and verbal working memory tasks is the features that are encoded; (2) secondary tasks selectively interfere with primary tasks to the extent that both tasks involve similar features. It is argued that a feature-based view is more parsimonious (see Morey, 2018) and offers flexibility in accounting for multiple benchmark effects in the field
- …
