6,153 research outputs found

    Constructing and exploring wells of energy landscapes

    Full text link
    Landscape paradigm is ubiquitous in physics and other natural sciences, but it has to be supplemented with both quantitative and qualitatively meaningful tools for analyzing the topography of a given landscape. We here consider dynamic explorations of the relief and introduce as basic topographic features ``wells of duration TT and altitude yy''. We determine an intrinsic exploration mechanism governing the evolutions from an initial state in the well up to its rim in a prescribed time, whose finite-difference approximations on finite grids yield a constructive algorithm for determining the wells. Our main results are thus (i) a quantitative characterization of landscape topography rooted in a dynamic exploration of the landscape, (ii) an alternative to stochastic gradient dynamics for performing such an exploration, (iii) a constructive access to the wells and (iv) the determination of some bare dynamic features inherent to the landscape. The mathematical tools used here are not familiar in physics: They come from set-valued analysis (differential calculus of set-valued maps and differential inclusions) and viability theory (capture basins of targets under evolutionary systems) which have been developed during the last two decades; we therefore propose a minimal appendix exposing them at the end of this paper to bridge the possible gap.Comment: 28 pages, submitted to J. Math. Phys -

    Existence and uniqueness for Mean Field Games with state constraints

    Full text link
    In this paper, we study deterministic mean field games for agents who operate in a bounded domain. In this case, the existence and uniqueness of Nash equilibria cannot be deduced as for unrestricted state space because, for a large set of initial conditions, the uniqueness of the solution to the associated minimization problem is no longer guaranteed. We attack the problem by interpreting equilibria as measures in a space of arcs. In such a relaxed environment the existence of solutions follows by set-valued fixed point arguments. Then, we give a uniqueness result for such equilibria under a classical monotonicity assumption

    Light hadrons with improved staggered quarks: approaching the continuum limit

    Full text link
    We have extended our program of QCD simulations with an improved Kogut-Susskind quark action to a smaller lattice spacing, approximately 0.09 fm. Also, the simulations with a approximately 0.12 fm have been extended to smaller quark masses. In this paper we describe the new simulations and computations of the static quark potential and light hadron spectrum. These results give information about the remaining dependences on the lattice spacing. We examine the dependence of computed quantities on the spatial size of the lattice, on the numerical precision in the computations, and on the step size used in the numerical integrations. We examine the effects of autocorrelations in "simulation time" on the potential and spectrum. We see effects of decays, or coupling to two-meson states, in the 0++, 1+, and 0- meson propagators, and we make a preliminary mass computation for a radially excited 0- meson.Comment: 43 pages, 16 figure

    K to pi and K to 0 in 2+1 Flavor Partially Quenched Chiral Perturbation Theory

    Full text link
    We calculate results for K to pi and K to 0 matrix elements to next-to-leading order in 2+1 flavor partially quenched chiral perturbation theory. Results are presented for both the Delta I=1/2 and 3/2 channels, for chiral operators corresponding to current-current, gluonic penguin, and electroweak penguin 4-quark operators. These formulas are useful for studying the chiral behavior of currently available 2+1 flavor lattice QCD results, from which the low energy constants of the chiral effective theory can be determined. The low energy constants of these matrix elements are necessary for an understanding of the Delta I=1/2 rule, and for calculations of epsilon'/epsilon using current lattice QCD simulations.Comment: 43 pages, 2 figures, uses RevTeX, added and updated reference

    Heavy-Light Semileptonic Decays in Staggered Chiral Perturbation Theory

    Full text link
    We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (\schpt), working to leading order in 1/mQ1/m_Q, where mQm_Q is the heavy quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered ``fourth root trick'' within \schpt by insertions of factors of 1/4 for each sea quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Becirevic, Prelovsek and Zupan, which we generalize to the staggered (and non-degenerate) case. As a by-product, we obtain the continuum partially quenched results with non-degenerate sea quarks. We analyze the effects of non-leading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors BπB\to\pi and DKD\to K when the light quarks are simulated with the staggered action.Comment: 53 pages, 8 figures, v2: Minor correction to the section on finite volume effects, and typos fixed. Version to be published in Phys. Rev.

    Approach of a class of discontinuous dynamical systems of fractional order: existence of the solutions

    Full text link
    In this letter we are concerned with the possibility to approach the existence of solutions to a class of discontinuous dynamical systems of fractional order. In this purpose, the underlying initial value problem is transformed into a fractional set-valued problem. Next, the Cellina's Theorem is applied leading to a single-valued continuous initial value problem of fractional order. The existence of solutions is assured by a P\'{e}ano like theorem for ordinary differential equations of fractional order.Comment: accepted IJBC, 5 pages, 1 figur
    corecore