9,167 research outputs found

    Quantum suppression of shot noise in atom-size metallic contacts

    Get PDF
    The transmission of conductance modes in atom-size gold contacts is investigated by simultaneously measuring conductance and shot noise. The results give unambiguous evidence that the current in the smallest gold contacts is mostly carried by nearly fully transmitted modes. In particular, for a single-atom contact the contribution of additional modes is only a few percent. In contrast, the trivalent metal aluminum does not show this property.Comment: Fig. 2 replaced, small errors correcte

    Ageing effects around the glass and melting transitions in poly(dimethylsiloxane) visualized by resistance measurements

    Get PDF
    The process of ageing in rubbers requires monitoring over long periods (days to years). To do so in non-conducting rubbers, small amounts of carbon-black particles were dispersed in a fractal network through the rubber matrix, to make the rubber conducting without modifying its properties. Continuous monitoring of the resistance reveals the structural changes around the glass and melting transitions and especially details about the hysteresis and ageing processes. We illustrate the method for the semicrystalline polymer poly(dimethylsiloxane) (PDMS).Comment: 4 pages, 4 figure

    NMR evidence for two-step phase-separation in Nd_{1.85}Ce_{0.15}CuO_{4-delta}

    Get PDF
    By Cu NMR we studied the spin and charge structure in Nd_{2-x}Ce_{x}CuO_{4-delta}. For x=0.15, starting from a superconducting sample, the low temperature magnetic order in the sample reoxygenated under 1 bar oxygen at 900^0 C, reveals a peculiar modulation of the internal field, indicative for a phase characterized by large charge droplets ('Blob'-phase). By prolonged reoxygenation at 4 bar the blobs brake up and the spin structure changes to that of an ordered antiferromagnet (AF). We conclude that the superconductivity in the n-type systems competes with a genuine type I Mott-insulating state

    Observation of Supershell Structure in Alkali Metal Nanowires

    Get PDF
    Nanowires are formed by indenting and subsequently retracting two pieces of sodium metal. Their cross-section gradually reduces upon retraction and the diameters can be obtained from the conductance. In previous work we have demonstrated that when one constructs a histogram of diameters from large numbers of indentation-retraction cycles, such histograms show a periodic pattern of stable nanowire diameters due to shell structure in the conductance modes. Here, we report the observation of a modulation of this periodic pattern, in agreement with predictions of a supershell structure.Comment: Phys. Rev. Lett., in prin

    Superconductivity in a Molecular Metal Cluster Compound

    Get PDF
    Compelling evidence for band-type conductivity and even bulk superconductivity below T_c8T\_{\text{c}}\approx 8 K has been found in 69,71^{69,71}Ga-NMR experiments in crystalline ordered, giant Ga_84\_{84} cluster-compounds. This material appears to represent the first realization of a theoretical model proposed by Friedel in 1992 for superconductivity in ordered arrays of weakly coupled, identical metal nanoparticles.Comment: 5 pages, 4 figure

    High-bias stability of monatomic chains

    Full text link
    For the metals Au, Pt and Ir it is possible to form freely suspended monatomic chains between bulk electrodes. The atomic chains sustain very large current densities, but finally fail at high bias. We investigate the breaking mechanism, that involves current-induced heating of the atomic wires and electromigration forces. We find good agreement of the observations for Au based on models due to Todorov and coworkers. The high-bias breaking of atomic chains for Pt can also be described by the models, although here the parameters have not been obtained independently. In the limit of long chains the breaking voltage decreases inversely proportional to the length.Comment: 7 pages, 5 figure

    First time determination of the microscopic structure of a stripe phase: Low temperature NMR in La2NiO4.17

    Get PDF
    The experimental observations of stripes in superconducting cuprates and insulating nickelates clearly show the modulation in charge and spin density. However, these have proven to be rather insensitive to the harmonic structure and (site or bond) ordering. Using 139La NMR in La2NiO4.17, we show that in the 1/3 hole doped nickelate below the freezing temperature the stripes are strongly solitonic and site ordered with Ni3+ ions carrying S=1/2 in the domain walls and Ni2+ ions with S=1 in the domains.Comment: 4 pages including 4 figure

    Quantum suppression of shot noise in field emitters

    Get PDF
    We have analyzed the shot noise of electron emission under strong applied electric fields within the Landauer-Buttiker scheme. In contrast to the previous studies of vacuum-tube emitters, we show that in new generation electron emitters, scaled down to the nanometer dimensions, shot noise much smaller than the Schottky noise is observable. Carbon nanotube field emitters are among possible candidates to observe the effect of shot-noise suppression caused by quantum partitioning.Comment: 5 pages, 1 fig, minor changes, published versio

    Localized and Delocalized Charge Transport in Single-Wall Carbon-Nanotube Mats

    Full text link
    We measured the complex dielectric constant in mats of single-wall carbon-nanotubes between 2.7 K and 300 K up to 0.5 THz. The data are well understood in a Drude approach with a negligible temperature dependence of the plasma frequency (omega_p) and scattering time (tau) with an additional contribution of localized charges. The dielectric properties resemble those of the best ''metallic'' polypyrroles and polyanilines. The absence of metallic islands makes the mats a relevant piece in the puzzle of the interpretation of tau and omega_p in these polymers.Comment: 4 pages including 4 figure
    corecore