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Nanowires are formed by indenting and subsequently retracting two pieces of sodium metal. Their
cross section gradually reduces upon retraction and the diameters can be obtained from the conductance.
In previous work we have demonstrated that when one constructs a histogram of diameters from large
numbers of indentation-retraction cycles such histograms show a periodic pattern of stable nanowire di-
ameters due to shell structure in the conductance modes. Here, we report the observation of a modulation
of this periodic pattern, in agreement with predictions of a supershell structure.

PACS numbers: 73.40.Jn, 61.46.+w, 73.20.Dx, 73.23.–b
Metallic nanowires clearly exhibit quantum properties
in their conductance and structure. At the level of a few
atoms in cross section, the conductance through metallic
nanowires can be described in terms of a finite number
of quantum modes, and it has been shown that this num-
ber is determined by the number of valence orbitals of the
metal atoms involved [1–3]. For monovalent free-electron
metals such as gold and, in particular, the alkali metals,
the conductance in the smallest contacts evolves roughly
through the successive opening of distinct conductance
channels as the contact size increases [4–6]. This quantum
character of electrical transport was already inferred from
histograms of conductance values for atomic-size point
contacts, which show that the contacts have a preference
for multiples of the conductance quantum G0 � 2e2�h
[7,8], after correction for a small series resistance.

It had been suggested that the formation of quantum
modes in nanowires should not only determine the con-
ductance but also the cohesive energy [9–11]. Recently,
we have shown that the stability of nanowires in the range
of cross sections up to about 130 atoms is determined by
electronic shell structure for quantum modes [12]. The
shell structure was observed in conductance histograms,
which were measured by many times indenting and retract-
ing two metal electrodes by means of a mechanically con-
trollable break junction (MCBJ) [13]. The key evidence for
shell structure is a regular spacing of diameters for wires
with enhanced stability, where the diameters were obtained
from the semiclassical expression for the conductance [14].
The shell structure observed here is a close analog of the
shell structure observed for alkali metal clusters [15,16],
and it is the same principle that also applies to electrons in
atoms and to protons and neutrons in nuclei.

For metal clusters produced in vapor jets in vacuum, and
analyzed by mass selection, it was observed that clusters
with certain “magic numbers” of atoms, 8, 20, 40, 58, etc.,
are more abundant than others. This was explained by their
enhanced stability due to the closing of the shells of elec-
tronic states, modeled as free electron waves confined to a
spherical potential well. The magic numbers can even be
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obtained from a semiclassical expansion for the oscillat-
ing part of the density of single-particle levels [15,17,18],
where the stable clusters are determined by those diame-
ters for which a bouncing electron wave traveling along a
closed classical path inscribed inside the spherical cluster
walls obeys the Bohr-Sommerfeld quantization condition
with the bulk metal Fermi wave vector, kF . The possible
trajectories are illustrated in Fig. 1. It was shown that
for spherical clusters the triangular and square orbits, with
indices �3, 1� and �4, 1�, dominantly determine the magic
number series.

Since the two dominant orbits, triangle and square, lead
to a slightly different series of stable diameters, the inter-
ference between the two series gives rise to a beat pattern,
known as supershell structure [15,17,19]. For alkali metal
clusters, a single beat due to this effect has indeed been
reported [20,21]. Here, we report the observation of su-
pershell structure in sodium nanowires. We show that, in
contrast to clusters but in agreement with the theory for
nanowires, the diametric orbit [labeled �2, 1� in Fig. 1] has
a strong contribution. Because of the larger separation be-
tween the periods for diametric and higher orbits, several
beat minima of the supershell structure can be observed.

FIG. 1. Series of semiclassical orbits inscribed inside a circular
cross section, which are applicable to spheres (clusters) and
cylinders (nanowires) alike. The orbits are labeled as �M, Q�,
where M is the number of vertices and Q is the winding number.
© 2000 The American Physical Society
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The experiment is performed using an MCBJ, modified
to accommodate the very reactive alkali metals [8]. A rect-
angular piece of sodium metal is cut, while immersed in
paraffin oil for protection against oxidation, and fixed upon
a phosphor bronze bending beam with four 1 mm screws.
A notch is cut in the center of the sodium sample, and the
assembly is taken out of the paraffin and quickly mounted
in a sample holder in a three-point bending configuration.
Current and voltage leads are connected to both sides of the
notch and the sample holder is evacuated and cooled down
to liquid helium temperature. By applying force to the
bending beam, the sodium sample is broken at the notch,
by which two clean fracture surfaces are exposed. Atomic-
size contacts can then be established by relaxing the force,
using a piezoelectric element for fine control. A heater
and thermometer permit controlling the temperature from
4.2 K to above 100 K, while the vacuum can remains im-
mersed in liquid helium. The conductance of the contacts
is measured with a four-point dc-voltage bias circuit. The
signal goes via a current-to-voltage converter through a
16 bit, 105 samples�s analog-to-digital converter to a pc-
based controller. The software also drives the two halves
of the sample into and out of contact by controlling the
piezovoltage. Conductance values are automatically ac-
cumulated into histograms for typically over 104 contact
breaking cycles, with a resolution of about 10 bins per
G0. In order to reduce digitization noise, a three bin wide
smoothing function is applied to the histograms.

At low temperatures and low voltage bias, only four
pronounced peaks at low conductance are seen in the his-
togram, near 1G0, 3G0, 5G0, and 6G0, which have been
attributed to the successive occupation of distinct quantum
modes [8]. At higher conductance, the histogram shows a
number of rather wide hills which grow into sharp peaks
as we increase the temperature [12]. Figure 2a shows an
example of a histogram for sodium at a sample tempera-
ture of 90 K. The histogram is similar to the one presented
in Ref. [12], but the modulation of the peak intensities is
more pronounced here [22]. The radius R of the nanowires
can be obtained from the semiclassical expression for the
conductance [14],
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The inset of Fig. 2a shows the radii, in units k21
F , corre-

sponding to the first six maxima against their sequential
number. Indeed, for shell structure we expect regularly
spaced peaks as a function of the radius.

The modulation of the peak intensities and their peri-
odicity is more clearly illustrated by subtracting a smooth
background and plotting the histogram as a function of the
radius (see Fig. 2b). Two beat minima are clearly visible
at about kFR � 7 and 11.5, and a third can be seen on the
expanded scale in the inset. Similar modulations have been
observed in histograms for potassium and lithium, which
will be discussed elsewhere.
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FIG. 2. Histogram of the number of times each conductance
is observed. (a) Data taken for sodium at T � 90 K and bias
voltage 100 mV, constructed from over 13 800 individual inden-
tation cycles. The inset shows a plot of the radii of the first six
maxima versus the peak number, illustrating the regular spacing
of the peak positions (the numbers represent conductance values
for each peak in quantum units). (b) The conductance histogram
for sodium from (a) with a smooth background subtracted, plot-
ted against the radius. In the inset a magnified portion at high
conductances is displayed. The full curve envelops peaks in the
histogram and the arrows point to positions of minimal ampli-
tude. These are the nodes of the supershell structure.

The components in the periodic structure are separated by
making a Fourier transform of the curve in Fig. 2b, which
is shown in Fig. 3a. We observe two frequency compo-
nents, one at 0.6–0.65 and the other at �0.8 0.9� �kFR�21.
We will argue that these are the components of the super-
shell structure.

The quantum modes in a nanowire give rise to an oscil-
lating contribution in the density of electronic states as a
function of electron energy at constant radius or as a func-
tion of the radius of the wire at the Fermi energy. The
modes each form a one-dimensional band, with quantum
numbers determined by the confinement in the two trans-
verse dimensions. This leads to an oscillating structure in
the thermodynamic potential [9–11,23–25]. The latter de-
termines the stability of a particular structure, which leads
5833
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FIG. 3. (a) Fourier transform of the histogram of Fig. 2(b) for
sodium. Two main peaks at 0.6–0.65 and 0.8–0.9 demonstrate
the importance of the distinct contribution of the diametric orbit.
(b) Fourier transform of the calculated oscillatory part of the
thermodynamic potential, Eq. (2), including terms Q � 1 and
M � 2, 3, . . . , 7. The shape of the nanowire was set by the pa-
rameters kFL0 � 200 and kFA � 50. The range of the variable
r is chosen to be approximately the same as for the experimen-
tal histograms. The three main orbits, diametric, triangle, and
square, are indicated.

to an oscillating probability for nanowire diameters. Also
the Sharvin conductance of the nanowires is modified by
an oscillating contribution, but this contribution appears to
be of secondary importance to the experiment [12]. The
leading terms in a semiclassical expansion of the oscillat-
ing part of thermodynamic potential are [23]
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where r � kFR, r 00 � ≠2r�≠z2 is the curvature along the
direction of the wire axis, and r and r 00 are taken at the nar-
rowest cross section, z � 0. The number M corresponds
to the number of vertices in the semiclassical orbit (see
5834
Fig. 1) and Q is the winding number. In order to evalu-
ate this expression we need to make some assumption
about a smooth evolution of the curvature of the wire, but
this will affect only the prefactor and not the oscillating
structure itself. Following Ref. [23] we assume a para-
bolic wire shape, r � r0 1 4�A 2 r0� �z�L�2. This shape
grows smoothly from an initial cylindrical wire of length
L0 and radius A while maintaining a constant volume, so
that the radius at the narrowest point can be expressed in
terms of its length L as r0 � �A�4� �

p
30L0�L 2 5 2 1�.

Substituting these expressions into Eq. (2), we calculate
the Fourier transform of Vosc�r� in the same range of r as
for the experimental data. The result is given in Fig. 3b,
where we have included terms up to M � 7 for Q � 1 (the
higher Q give rise to lower amplitude harmonics and we
concentrate on the fundamental components). The domi-
nant peak is due to the diametric orbit �M, Q� � �2, 1�
and the peaks for higher M rapidly decrease in amplitude
and their frequency converges at 1, marking the end of the
first series (Q � 1). In the Fourier transform we can re-
solve only two peaks in addition to the one for M � 2,
corresponding to the triangular (M � 3) and square orbits
(M � 4).

The experiment clearly shows the same groups of fre-
quencies, one corresponding to the diametric orbit and
one peak at the position of the triangular and square or-
bits, which cannot be individually resolved. Some of the
higher frequency maxima with small intensities are prob-
ably partly due to harmonics of the main bands. The rela-
tive intensities of three calculated peaks cannot be directly
compared to the theoretical spectrum since the latter re-
sults from the thermodynamic potential, which we do not
measure directly. The experimental spectrum is derived
from the conductance histogram and is expected to reflect
the same components as the thermodynamic potential, but
the intensities depend, among others, on kinetic factors
for surface diffusion of atoms and the time available for
reaching the proper minima in the potential. Further dif-
ferences may arise from deviations in cylindrical symmetry
of the wire and scattering of the electrons on residual sur-
face roughness. In particular, the later mechanism would
favor the higher order orbits, since specular reflection in-
creases for smaller angle of incidence with the surface.

In contrast to cylindrical systems, for spherical systems
the diametric orbit (M � 2) is negligible as it has a sig-
nificantly smaller degeneracy compared to the triangular
(M � 3) and squared (M � 4) ones [17]: For a given
position of one vertex, the triangle and square have an ad-
ditional degree of freedom being the rotation around the
normal to this point. The contribution of the higher order
orbits decays as a high power of the index M of the or-
bit. The closeness of the frequencies for the triangular and
square orbits leads to a long beating period. The first node
of the shell structure amplitude should be observed after
approximately 12 periods of principal oscillations. The
natural limit on the number of chemical elements makes



VOLUME 84, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 19 JUNE 2000
the number of shells in the periodic table too small for
supershell structure to be observable. The same applies to
shell structure in atomic nuclei. Although the amplitude of
such a high number of oscillations is greatly diminished,
the first node of the beating pattern in cluster abundance
spectra was observed in Refs. [20,21,26].

For nanowires, the degeneracy of the diametric, triangle,
and square orbits is of the same order, and the larger
separation between the M � 2 frequency and the higher
ones make the beating pattern more readily visible in the
nanowire shell structure as compared to the metal cluster
experiments. Thus, for the first time a direct Fourier trans-
form of the experimental data yields proof for the existence
of semiclassical orbits responsible for the oscillations in
the thermodynamic potential of the system as a function
of the radius.
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