14,657 research outputs found
Ludics and its Applications to natural Language Semantics
Proofs, in Ludics, have an interpretation provided by their counter-proofs,
that is the objects they interact with. We follow the same idea by proposing
that sentence meanings are given by the counter-meanings they are opposed to in
a dialectical interaction. The conception is at the intersection of a
proof-theoretic and a game-theoretic accounts of semantics, but it enlarges
them by allowing to deal with possibly infinite processes
A feasible algorithm for typing in Elementary Affine Logic
We give a new type inference algorithm for typing lambda-terms in Elementary
Affine Logic (EAL), which is motivated by applications to complexity and
optimal reduction. Following previous references on this topic, the variant of
EAL type system we consider (denoted EAL*) is a variant without sharing and
without polymorphism. Our algorithm improves over the ones already known in
that it offers a better complexity bound: if a simple type derivation for the
term t is given our algorithm performs EAL* type inference in polynomial time.Comment: 20 page
Recent Results from the SIMPLE Dark Matter Search
SIMPLE is an experimental search for evidence of spin-dependent dark matter,
based on superheated droplet detectors using CClF. We report
preliminary results of a 0.6 kgdy exposure of five one liter devices, each
containing 10 g active mass, in the 1500 mwe LSBB (Rustrel, France). In
combination with improvements in detector sensitivity, the results exclude a
WIMP--proton interaction above 5 pb at M = 50 GeV/c.Comment: 6 pages, 2 figures,contribution to IDM2004, Sept. 6-10, 2004,
Edinburgh, U
Two loop detection mechanisms: a comparison
In order to compare two loop detection mechanisms we describe two calculi for theorem proving in intuitionistic propositional logic. We call them both MJ Hist, and distinguish between them by description as `Swiss' or `Scottish'. These calculi combine in different ways the ideas on focused proof search of Herbelin and Dyckhoff & Pinto with the work of Heuerding emphet al on loop detection. The Scottish calculus detects loops earlier than the Swiss calculus but at the expense of modest extra storage in the history. A comparison of the two approaches is then given, both on a theoretic and on an implementational level
Microwave responses of the western North Atlantic
Features and objects in the Western North Atlantic Ocean - the Eastern Seaboard of the United States - are observed from Earth orbit by passive microwaves. The intensities of their radiated flux signatures are measured and displayed in color as a microwave flux image. The features of flux emitting objects such as the course of the Gulf Stream and the occurrence of cold eddies near the Gulf Stream are identified by contoured patterns of relative flux intensities. The flux signatures of ships and their wakes are displayed and discussed. Metal data buoys and aircraft are detected. Signal to clutter ratios and probabilities of detection are computed from their measured irradiances. Theoretical models and the range equations that explain passive microwave detection using the irradiances of natural sources are summarized
Unification and Logarithmic Space
We present an algebraic characterization of the complexity classes Logspace
and NLogspace, using an algebra with a composition law based on unification.
This new bridge between unification and complexity classes is inspired from
proof theory and more specifically linear logic and Geometry of Interaction.
We show how unification can be used to build a model of computation by means
of specific subalgebras associated to finite permutations groups. We then prove
that whether an observation (the algebraic counterpart of a program) accepts a
word can be decided within logarithmic space. We also show that the
construction can naturally represent pointer machines, an intuitive way of
understanding logarithmic space computing
Polarization state of the optical near-field
The polarization state of the optical electromagnetic field lying several
nanometers above complex dielectric structures reveals the intricate
light-matter interaction that occurs in this near-field zone. This information
can only be extracted from an analysis of the polarization state of the
detected light in the near-field. These polarization states can be calculated
by different numerical methods well-suited to near--field optics. In this
paper, we apply two different techniques (Localized Green Function Method and
Differential Theory of Gratings) to separate each polarisation component
associated with both electric and magnetic optical near-fields produced by
nanometer sized objects. The analysis is carried out in two stages: in the
first stage, we use a simple dipolar model to achieve insight into the physical
origin of the near-field polarization state. In the second stage, we calculate
accurate numerical field maps, simulating experimental near-field light
detection, to supplement the data produced by analytical models. We conclude
this study by demonstrating the role played by the near-field polarization in
the formation of the local density of states.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.
- …