501 research outputs found

    How the rise of teleworking will reshape labor markets and cities

    Get PDF
    In recent years the land-rent gradient for the city of London has flattened by 17 percentage points. Further, teleworking has increased 24 percentage point for skilled workers, but much less for unskilled workers. To rationalize these stylized facts, we propose a model of the monocentric city with heterogeneous workers and teleworking. Skilled workers, working in final goods production, can telework while unskilled workers, working in either final goods or local services production, cannot. We show that increased teleworking flattens the land-rent gradient, and eventually skilled workers move from the city center to the city’s periphery, fundamentally changing the city structure. The increased teleworking has implications for unskilled workers who move from the local services sector into final goods, leading to greater wage inequality between skilled and unskilled workers. The model is extended to two cities which differ in productivity. Teleworking allows skilled workers of the more productive city to reside in the less productive city where housing is cheaper. This increases housing prices in the less productive city, relative to the more productive city, and has implications for unskilled workers in both cities. We provide empirical evidence from housing prices in England which is consistent with this result

    Worker heterogeneity, new monopsony, and training

    Get PDF
    A worker's output depends not only on his/her own ability but also on that of colleagues, who can facilitate the performance of tasks that each individual cannot accomplish on his/her own. We show that this common-sense observation generates monopsony power and is sufficient to explain why employers might expend resources on training employees even when the training is of use to other firms. We show that training will take place in better-than-average or ‘good’ firms enjoying greater monopsony power, whereas ‘bad’ firms will have low-ability workers unlikely to receive much training

    Parametrically excited surface waves: Two-frequency forcing, normal form symmetries, and pattern selection

    Get PDF
    Motivated by experimental observations of exotic standing wave patterns in the two-frequency Faraday experiment, we investigate the role of normal form symmetries in the pattern selection problem. With forcing frequency components in ratio m/n, where m and n are co-prime integers, there is the possibility that both harmonic and subharmonic waves may lose stability simultaneously, each with a different wavenumber. We focus on this situation and compare the case where the harmonic waves have a longer wavelength than the subharmonic waves with the case where the harmonic waves have a shorter wavelength. We show that in the former case a normal form transformation can be used to remove all quadratic terms from the amplitude equations governing the relevant resonant triad interactions. Thus the role of resonant triads in the pattern selection problem is greatly diminished in this situation. We verify our general results within the example of one-dimensional surface wave solutions of the Zhang-Vinals model of the two-frequency Faraday problem. In one-dimension, a 1:2 spatial resonance takes the place of a resonant triad in our investigation. We find that when the bifurcating modes are in this spatial resonance, it dramatically effects the bifurcation to subharmonic waves in the case of forcing frequencies are in ratio 1/2; this is consistent with the results of Zhang and Vinals. In sharp contrast, we find that when the forcing frequencies are in ratio 2/3, the bifurcation to (sub)harmonic waves is insensitive to the presence of another spatially-resonant bifurcating mode

    Twist-1 regulates the miR-199a/214 cluster during development

    Get PDF
    MicroRNAs are known to regulate developmental processes but their mechanism of regulation remains largely uncharacterized. We show the transcription factor Twist-1 drives the expression of a 7.9-kb noncoding RNA transcript (from the Dynamin-3 gene intron) that encodes a miR-199a and miR-214 cluster. We also show that knocking down Twist-1 with shRNAs decreased miR-199a/214 levels and that Twist-1 bound an E-Box promoter motif to developmentally regulate the expression of these miRNAs. The expression of HIF-1 (known to mediate Twist-1 transcription), miR-199a and miR-214 was maximal at E12.5 and the miRNAs were expressed specifically in mouse cerebellum, midbrain, nasal process and fore- and hindlimb buds. This study shows the expression of the miR199a/214 cluster is controlled by Twist-1 via an E-Box promoter element and supports a role for these miRNAs as novel intermediates in the pathways controlling the development of specific neural cell populations

    Reduction of the ATPase inhibitory factor 1 (IF1) leads to visual impairment in vertebrates

    Get PDF
    In vertebrates, mitochondria are tightly preserved energy producing organelles, which sustain nervous system development and function. The understanding of proteins that regulate their homoeostasis in complex animals is therefore critical and doing so via means of systemic analysis pivotal to inform pathophysiological conditions associated with mitochondrial deficiency. With the goal to decipher the role of the ATPase inhibitory factor 1 (IF1) in brain development, we employed the zebrafish as elected model reporting that the Atpif1a−/− zebrafish mutant, pinotage (pnttq209), which lacks one of the two IF1 paralogous, exhibits visual impairment alongside increased apoptotic bodies and neuroinflammation in both brain and retina. This associates with increased processing of the dynamin-like GTPase optic atrophy 1 (OPA1), whose ablation is a direct cause of inherited optic atrophy. Defects in vision associated with the processing of OPA1 are specular in Atpif1−/− mice thus confirming a regulatory axis, which interlinks IF1 and OPA1 in the definition of mitochondrial fitness and specialised brain functions. This study unveils a functional relay between IF1 and OPA1 in central nervous system besides representing an example of how the zebrafish model could be harnessed to infer the activity of mitochondrial proteins during development

    Functional Analysis of Conserved Non-Coding Regions Around the Short Stature hox Gene (shox) in Whole Zebrafish Embryos

    Get PDF
    Background: Mutations in the SHOX gene are responsible for Leri-Weill Dyschondrosteosis, a disorder characterised by mesomelic limb shortening. Recent investigations into regulatory elements surrounding SHOX have shown that deletions of conserved non-coding elements (CNEs) downstream of the SHOX gene produce a phenotype indistinguishable from Leri-Weill Dyschondrosteosis. As this gene is not found in rodents, we used zebrafish as a model to characterise the expression pattern of the shox gene across the whole embryo and characterise the enhancer domains of different CNEs associated with this gene. Methodology/Principal Findings: Expression of the shox gene in zebrafish was identified using in situ hybridization, with embryos showing expression in the blood, putative heart, hatching gland, brain pharyngeal arch, olfactory epithelium, and fin bud apical ectodermal ridge. By identifying sequences showing 65% identity over at least 40 nucleotides between Fugu, human, dog and opossum we uncovered 35 CNEs around the shox gene. These CNEs were compared with CNEs previously discovered by Sabherwal et al. ,resulting in the identification of smaller more deeply conserved sub-sequence. Sabherwal et al.’s CNEs were assayed for regulatory function in whole zebrafish embryos resulting in the identification of additional tissues under the regulatory control of these CNEs. Conclusion/Significance: Our results using whole zebrafish embryos have provided a more comprehensive picture of the expression pattern of the shox gene, and a better understanding of its regulation via deeply conserved noncoding elements. In particular, we identify additional tissues under the regulatory control of previously identified SHOX CNEs. We also demonstrate the importance of these CNEs in evolution by identifying duplicated shox CNEs and more deeply conserved sub-sequences within already identified CNEs

    Characterization of sequences in human TWIST required for nuclear localization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Twist is a transcription factor that plays an important role in proliferation and tumorigenesis. Twist is a nuclear protein that regulates a variety of cellular functions controlled by protein-protein interactions and gene transcription events. The focus of this study was to characterize putative nuclear localization signals (NLSs) <sup>37</sup>RKRR<sup>40 </sup>and <sup>73</sup>KRGKK<sup>77 </sup>in the human TWIST (H-TWIST) protein.</p> <p>Results</p> <p>Using site-specific mutagenesis and immunofluorescences, we observed that altered TWIST<sup>NLS1 </sup>K38R, TWIST<sup>NLS2 </sup>K73R and K77R constructs inhibit nuclear accumulation of H-TWIST in mammalian cells, while TWIST<sup>NLS2 </sup>K76R expression was un-affected and retained to the nucleus. Subsequently, co-transfection of TWIST mutants K38R, K73R and K77R with E12 formed heterodimers and restored nuclear localization despite the NLSs mutations. Using a yeast-two-hybrid assay, we identified a novel TWIST-interacting candidate TCF-4, a basic helix-loop-helix transcription factor. The interaction of TWIST with TCF-4 confirmed using NLS rescue assays, where nuclear expression of mutant TWIST<sup>NLS1 </sup>with co-transfixed TCF-4 was observed. The interaction of TWIST with TCF-4 was also seen using standard immunoprecipitation assays.</p> <p>Conclusion</p> <p>Our study demonstrates the presence of two putative NLS motifs in H-TWIST and suggests that these NLS sequences are functional. Furthermore, we identified and confirmed the interaction of TWIST with a novel protein candidate TCF-4.</p

    Regeneration of Cryoinjury Induced Necrotic Heart Lesions in Zebrafish Is Associated with Epicardial Activation and Cardiomyocyte Proliferation

    Get PDF
    In mammals, myocardial cell death due to infarction results in scar formation and little regenerative response. In contrast, zebrafish have a high capacity to regenerate the heart after surgical resection of myocardial tissue. However, whether zebrafish can also regenerate lesions caused by cell death has not been tested. Here, we present a simple method for induction of necrotic lesions in the adult zebrafish heart based on cryoinjury. Despite widespread tissue death and loss of cardiomyocytes caused by these lesions, zebrafish display a robust regenerative response, which results in substantial clearing of the necrotic tissue and little scar formation. The cellular mechanisms underlying regeneration appear to be similar to those activated in response to ventricular resection. In particular, the epicardium activates a developmental gene program, proliferates and covers the lesion. Concomitantly, mature uninjured cardiomyocytes become proliferative and invade the lesion. Our injury model will be a useful tool to study the molecular mechanisms of natural heart regeneration in response to necrotic cell death

    Identification of Vascular and Hematopoietic Genes Downstream of etsrp by Deep Sequencing in Zebrafish

    Get PDF
    The transcription factor etsrp/Er71/Etv2 is a master control gene for vasculogenesis in all species studied to date. It is also required for hematopoiesis in zebrafish and mice. Several novel genes expressed in vasculature have been identified through transcriptional profiling of zebrafish embryos overexpressing etsrp by microarrays. Here we re-examined this transcriptional profile by Illumina RNA-sequencing technology, revealing a substantially increased number of candidate genes regulated by etsrp. Expression studies of 50 selected candidate genes from this dataset resulted in the identification of 39 new genes that are expressed in vascular cells. Regulation of these genes by etsrp was confirmed by their ectopic induction in etsrp overexpressing and decreased expression in etsrp deficient embryos. Our studies demonstrate the effectiveness of the RNA-sequencing technology to identify biologically relevant genes in zebrfish and produced a comprehensive profile of genes previously unexplored in vascular endothelial cell biology
    corecore