347 research outputs found

    Sulfatide in health and disease. The evaluation of sulfatide in cerebrospinal fluid as a possible biomarker for neurodegeneration

    Get PDF
    Sulfatide (3-O-sulfogalactosylceramide, SM4) is a glycosphingolipid, highly multifunctional and particularly enriched in the myelin sheath of neurons. The role of sulfatide has been implicated in various biological fields such as the nervous system, immune system, host-pathogen recognition and infection, beta cell function and haemostasis/thrombosis. Thus, alterations in sulfatide metabolism and production are associated with several human diseases such as neurological and immunological disorders and cancers. The unique lipid-rich composition of myelin reflects the importance of lipids in this specific membrane structure. Sulfatide has been shown to be involved in the regulation of oligodendrocyte differentiation and in the maintenance of the myelin sheath by influencing membrane dynamics involving sorting and lateral assembly of myelin proteins as well as ion channels. Sulfatide is furthermore essential for proper formation of the axo-glial junctions at the paranode together with axonal glycosphingolipids. Alterations in sulfatide metabolism are suggested to contribute to myelin deterioration as well as synaptic dysfunction, neurological decline and inflammation observed in different conditions associated with myelin pathology (mouse models and human disorders). Body fluid biomarkers are of importance for clinical diagnostics as well as for patient stratification in clinical trials and treatment monitoring. Cerebrospinal fluid (CSF) is commonly used as an indirect measure of brain metabolism and analysis of CSF sulfatide might provide information regarding whether the lipid disruption observed in neurodegenerative disorders is reflected in this body fluid. In this review, we evaluate the diagnostic utility of CSF sulfatide as a biomarker for neurodegenerative disorders associated with dysmyelination/demyelination by summarising the current literature on this topic. We can conclude that neither CSF sulfatide levels nor individual sulfatide species consistently reflect the lipid disruption observed in many of the demyelinating disorders. One exception is the lysosomal storage disorder metachromatic leukodystrophy, possibly due to the genetically determined accumulation of non-metabolised sulfatide. We also discuss possible explanations as to why myelin pathology in brain tissue is poorly reflected by the CSF sulfatide concentration. The previous suggestion that CSF sulfatide is a marker of myelin damage has thereby been challenged by more recent studies using more sophisticated laboratory techniques for sulfatide analysis as well as improved sample selection criteria due to increased knowledge on disease pathology

    Attosecond spectroscopy of bio-chemically relevant molecules

    Get PDF
    Understanding the role of the electron dynamics in the photochemistry of bio-chemically relevant molecules is key to getting access to the fundamental physical processes leading to damage, mutation and, more generally, to the alteration of the final biological functions. Sudden ionization of a large molecule has been proven to activate a sub-femtosecond charge flow throughout the molecular backbone, purely guided by electronic coherences, which could ultimately affect the photochemical response of the molecule at later times. We can follow this ultrafast charge flow in real time by exploiting the extreme time resolution provided by attosecond light sources. In this work recent advances in attosecond molecular physics are presented with particular focus on the investigation of bio-relevant molecules

    New symmetries of the chiral Potts model

    Full text link
    In this paper a hithertho unknown symmetry of the three-state chiral Potts model is found consisting of two coupled Temperley-Lieb algebras. From these we can construct new superintegrable models. One realisation is in terms of a staggered isotropic XY spin chain. Further we investigate the importance of the algebra for the existence of mutually commuting charges. This leads us to a natural generalisation of the boost-operator, which generates the charges.Comment: 19 pages, improved notation, made the text easier to read, corrected some typo

    Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates

    Get PDF
    We present a soft x-ray angle-resolved photoemission spectroscopy study of the overdoped high-temperature superconductors La2−x_{2-x}Srx_xCuO4_4 and La1.8−x_{1.8-x}Eu0.2_{0.2}Srx_xCuO4_4. In-plane and out-of-plane components of the Fermi surface are mapped by varying the photoemission angle and the incident photon energy. No kzk_z dispersion is observed along the nodal direction, whereas a significant antinodal kzk_z dispersion is identified. Based on a tight-binding parametrization, we discuss the implications for the density of states near the van-Hove singularity. Our results suggest that the large electronic specific heat found in overdoped La2−x_{2-x}Srx_xCuO4_4 can not be assigned to the van-Hove singularity alone. We therefore propose quantum criticality induced by a collapsing pseudogap phase as a plausible explanation for observed enhancement of electronic specific heat

    Neutron powder diffraction study of NaMn2_2O4_4 and Li0.92_{0.92}Mn2_2O4_4: New insights on spin-charge-orbital ordering

    Get PDF
    The high-pressure synthesized quasi-one-dimensional compounds NaMn2_2O4_4 and Li0.92_{0.92}Mn2_2O4_4 are both antiferromagnetic insulators, and here their atomic and magnetic structures were investigated using neutron powder diffraction. The present crystal structural analyses of NaMn2O4 reveal that Mn3+/Mn4+ charge-ordering state exist even at low temperature (down to 1.5 K). It is evident from one of the Mn sites shows a strongly distorted Mn3+ octahedra due to the Jahn-Teller effect. Above TN = 39 K, a two-dimensional short-range correlation is observed, as indicated by an asymmetric diffuse scattering. Below TN, two antiferromagnetic transitions are observed (i) a commensurate long-range Mn3+ spin ordering below 39 K, and (ii) an incommensurate Mn4+ spin ordering below 10 K. The commensurate magnetic structure (kC = 0.5, -0.5, 0.5) follows the magnetic anisotropy of the local easy axes of Mn3+, while the incommensurate one shows a spin-density-wave order with kIC = (0,0,0.216). For Li0.92_{0.92}Mn2_2O4_4, on the other hand, absence of a long-range spin ordered state down to 1.5 K is confirmed.Comment: 11 pages, 8 figure

    The general Leigh-Strassler deformation and integrability

    Full text link
    The success of the identification of the planar dilatation operator of N=4 SYM with an integrable spin chain Hamiltonian has raised the question if this also is valid for a deformed theory. Several deformations of SYM have recently been under investigation in this context. In this work we consider the general Leigh-Strassler deformation. For the generic case the S-matrix techniques cannot be used to prove integrability. Instead we use R-matrix techniques to study integrability. Some new integrable points in the parameter space are found.Comment: 22 pages, 8 figures, reference adde

    The dual string sigma-model of the SU_q(3) sector

    Full text link
    In four-dimensional N=4 super Yang-Mills (SYM) the SU(3) sub-sector spanned by purely holomorphic fields is isomorphic to the corresponding mixed one spanned by both holomorphic and antiholomorphic fields. This is no longer the case when one considers the marginally deformed N=4 SYM. The mixed SU(3) sector marginally deformed by a complex parameter beta, i.e. SU_q(3) with q=e^{2 i\pi\beta}, has been shown to be integrable at one-loop hep-th/0703150, while it is not the case for the corresponding purely holomorphic one. Moreover, the marginally deformed N=4 SYM also has a gravity dual constructed by Lunin and Maldacena in hep-th/0502086. However, the mixed SU_q(3) sector has not been studied from the supergravity point of view. Hence in this note, for the case of purely imaginary marginal β\beta-deformations, we compute the superstring SU_q(3) \sigma-model in the fast spinning string limit and show that, for rational spinning strings, it reproduces the energy computed via Bethe equations.Comment: 20 page
    • …
    corecore