3,025 research outputs found

    Black hole mergers in the universe

    Get PDF
    Mergers of black-hole binaries are expected to release large amounts of energy in the form of gravitational radiation. However, binary evolution models predict merger rates too low to be of observational interest. In this paper we explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems. In star clusters, black holes become the most massive objects within a few tens of millions of years; dynamical relaxation then causes them to sink to the cluster core, where they form binaries. These black-hole binaries become more tightly bound by superelastic encounters with other cluster members, and are ultimately ejected from the cluster. The majority of escaping black-hole binaries have orbital periods short enough and eccentricities high enough that the emission of gravitational radiation causes them to coalesce within a few billion years. We predict a black-hole merger rate of about 1.6×10−71.6 \times 10^{-7} per year per cubic megaparsec, implying gravity wave detection rates substantially greater than the corresponding rates from neutron star mergers. For the first generation Laser Interferometer Gravitational-Wave Observatory (LIGO-I), we expect about one detection during the first two years of operation. For its successor LIGO-II, the rate rises to roughly one detection per day. The uncertainties in these numbers are large. Event rates may drop by about an order of magnitude if the most massive clusters eject their black hole binaries early in their evolution.Comment: 12 pages, ApJL in pres

    Rice Intensification in a Changing Environment: Impact on Water Availability in Inland Valley Landscapes in Benin

    Get PDF
    This study assesses the impact of climate change on hydrological processes under rice intensification in three headwater inland valley watersheds characterized by different land conditions. The Soil and Water Assessment Tool was used to simulate the combined impacts of two land use scenarios defined as converting 25% and 75% of lowland savannah into rice cultivation, and two climate scenarios (A1B and B1) of the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. The simulations were performed based on the traditional and the rainfed-bunded rice cultivation systems and analyzed up to the year 2049 with a special focus on the period of 2030–2049. Compared to land use, climate change impact on hydrological processes was overwhelming at all watersheds. The watersheds with a high portion of cultivated areas are more sensitive to changes in climate resulting in a decrease of water yield of up to 50% (145 mm). Bunded fields cause a rise in surface runoff projected to be up to 28% (18 mm) in their lowlands, while processes were insignificantly affected at the vegetation dominated-watershed. Analyzing three watersheds instead of one as is usually done provides further insight into the natural variability and therefore gives more evidence of possible future processes and management strategie

    De Branges-Rovnyak realizations of operator-valued Schur functions on the complex right half-plane

    Get PDF
    We give a controllable energy-preserving and an observable co-energy-preserving de Branges-Rovnyak functional model realization of an arbitrary given operator Schur function defined on the complex right-half plane. We work the theory out fully in the right-half plane, without using results for the disk case, in order to expose the technical details of continuous-time systems theory. At the end of the article, we make explicit the connection to the corresponding classical de Branges-Rovnyak realizations for Schur functions on the complex unit disk.Comment: 68 pages: General polishing; no essential change

    Expected Coalescence Rate of Double Neutron Stars for Ground Based Interferometers

    Full text link
    In this paper we present new estimates of the coalescence rate of neutron star binaries in the local universe and we discuss its consequences for the first generations of ground based interferometers. Our approach based on both evolutionary and statistical methods gives a galactic merging rate of 1.7 10−5^{-5} yr−1^{-1}, in the range of previous estimates 10−6^{-6} - 10−4^{-4} yr−1^{-1}. The local rate which includes the contribution of elliptical galaxies is two times higher, in the order of 3.4 10−5^{-5} yr−1^{-1}. We predict one detection every 148 and 125 years with initial VIRGO and LIGO, and up to 6 events per year with their advanced configuration. Our recent detection rate estimates from investigations on VIRGO future improvements are quoted.Comment: talk given at the GWDAW9 (Annecy, 2004) to be published in CQ

    A New Formation Channel for Double Neutron Stars Without Recycling: Implications for Gravitational Wave Detection

    Get PDF
    We report on a new evolutionary path leading to the formation of close double neutron stars (NS), with the unique characteristic that none of the two NS ever had the chance to be recycled by accretion. The existence of this channel stems from the evolution of helium-rich stars (cores of massive NS progenitors), which has been neglected in most previous studies of double compact object formation. We find that these non-recycled NS-NS binaries are formed from bare carbon-oxygen cores in tight orbits, with formation rates comparable to or maybe even higher than those of recycled NS-NS binaries. On the other hand, their detection probability as binary pulsars is greatly reduced (by about 1000) relative to recycled pulsars, because of their short lifetimes. We conclude that, in the context of gravitational-wave detection of NS-NS inspiral events, this new type of binaries calls for an increase of the rate estimates derived from the observed NS-NS with recycled pulsars, typically by factors of 1.5-3 or even higher.Comment: Accepted for publication in ApJ Letters; 5 pages, 1 figure, 2 tables. Two new paragraphs and one formula adde

    A pilgrimage to gravity on GPUs

    Get PDF
    In this short review we present the developments over the last 5 decades that have led to the use of Graphics Processing Units (GPUs) for astrophysical simulations. Since the introduction of NVIDIA's Compute Unified Device Architecture (CUDA) in 2007 the GPU has become a valuable tool for N-body simulations and is so popular these days that almost all papers about high precision N-body simulations use methods that are accelerated by GPUs. With the GPU hardware becoming more advanced and being used for more advanced algorithms like gravitational tree-codes we see a bright future for GPU like hardware in computational astrophysics.Comment: To appear in: European Physical Journal "Special Topics" : "Computer Simulations on Graphics Processing Units" . 18 pages, 8 figure

    The Sandwich algorithm for spatial equilibrium analysis

    Get PDF
    Recent advances in mathematical programming techniques have made it possible to provide more realistic solutions to applied economic problems. Although mathematical programming techniques are widely used, the economic content of the solutions is often limited by the assumptions imposed by the algorithms available. This report is designed to demonstrate the increased flexibility which is currently available for the solution of a wide range of spatial economic problems. Transportation and transhipment models have been widely used in the analysis of the impact of policy changes on spatial activity, Borrell & Zwart [l]; Beck, Rathbun and Abbott [2]. One of the major shortcomings of such models has been an inability to model the impact of more flexible pricing policies on regional supply and demand, while maintaining the realistic non linearities which are associated with processing and transportation costs. In this paper a simplified version of the transhipment model developed by Borrell & Zwart [l] is modified to incorporate regional supply response while at the same time retaining complex processing and handling cost relationships. This report outlines the general form of the spatial equilibrium problem and some of the solution techniques available, in a format easily understood by readers not conversant with operational research techniques. Initially the problem is defined and solution methods used in the past are then briefly described. The advantages and disadvantages of these methods are outlined before showing how a relatively new solution technique may be able to improve both the scope and flexibility of the problems being solved

    Monte-Carlo Simulations of Globular Cluster Evolution - I. Method and Test Calculations

    Get PDF
    We present a new parallel supercomputer implementation of the Monte-Carlo method for simulating the dynamical evolution of globular star clusters. Our method is based on a modified version of Henon's Monte-Carlo algorithm for solving the Fokker-Planck equation. Our code allows us to follow the evolution of a cluster containing up to 5x10^5 stars to core collapse in < 40 hours of computing time. In this paper we present the results of test calculations for clusters with equal-mass stars, starting from both Plummer and King model initial conditions. We consider isolated as well as tidally truncated clusters. Our results are compared to those obtained from approximate, self-similar analytic solutions, from direct numerical integrations of the Fokker-Planck equation, and from direct N-body integrations performed on a GRAPE-4 special-purpose computer with N=16384. In all cases we find excellent agreement with other methods, establishing our new code as a robust tool for the numerical study of globular cluster dynamics using a realistic number of stars.Comment: 35 pages, including 8 figures, submitted to ApJ. Revised versio
    • 

    corecore