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1 Introduction

It essentially goes back to Kalman (with earlier roots in circuit theory from the middle
of the twentieth century) that any rational function φ holomorphic in a neighborhood
of the origin with values in the space B(U ,Y) of bounded linear operators between
two Hilbert spaces U (the input space) and Y (the output space) can be realized as the
transfer function of an input/state/output linear system, i.e., there is a Hilbert space X
(the state space) and a bounded operator system matrix U := [

A B
C D

] : [X
U
] → [X

Y
]

so that φ(z) has the representation

φ(z) = D + zC(1 − z A)−1 B. (1.1)

If we associate with U the discrete-time input/state/output system

�U :
{

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

, (1.2)

the meaning of (1.1) is that φ is the transfer function of the i/s/o system �U in the
following sense: whenever the input string {un}n∈Z+ is fed into the system (1.2) with
the initial condition x(0) = 0 on the state vector, the output string {y(n)}n∈Z+ is
produced, such that ŷ(z) = φ(z)̂u(z), where û and ŷ denote the Z -transforms of
{u(n)}n∈Z+ and {y(n)}n∈Z+ :
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û(z) =
∞∑

n=0

u(n)zn, ŷ(z) =
∞∑

n=0

ynzn . (1.3)

In the infinite-dimensional setting, the fact that any contractive holomorphic
operator-valued function can be represented in the form (1.1) with U unitary comes
out of the Sz.-Nagy–Foiaş model theory for completely non-unitary contraction oper-
ators; see [48]. There is a closely related but somewhat different theory of canonical
functional models due to de Branges and Rovnyak [23,24] which relies on reproducing
kernel Hilbert spaces. This is the direction we pursue in the present paper, assuming
throughout that U and Y are separable.

Let G be a Hilbert space and let B(G) denote the space of bounded linear operators
on G. In general we say that a function K : �×� → B(G) is a positive kernel on � if

N∑

i, j=1

〈K (ωi , ω j )g j , gi 〉G ≥ 0 (1.4)

for all choices of points ω1, . . . , ωN in � and vectors g1, . . . , gN ∈ G. The fol-
lowing theorem summarizes some useful equivalent characterizations of a positive
B(G)-valued kernel on �.

Theorem 1.1 Given a Hilbert space G and a function K : � × � → B(G), the
following are equivalent:

1. The function K is a positive kernel, i.e., condition (1.4) holds for all ω1, . . . , ωN

in � and g1, . . . , gN ∈ G for N = 1, 2, . . . .
2. The function K is the reproducing kernel of a reproducing kernel Hilbert space

H(K ), i.e., there is a unique Hilbert space H(K ) whose elements are functions
f : � → G such that:

(a) For each ω ∈ � and g ∈ G, the function ζ �→ K (ζ, ω)g, ζ ∈ �, belongs to
H(K ), and

(b) the reproducing property

〈 f, K (·, ω)g〉H(K ) = 〈 f (ω), g〉G (1.5)

holds for all f ∈ H(K ), ω ∈ �, and g ∈ G.
3. The function K has a Kolmogorov decomposition, i.e., there is a Hilbert space F

and a function H : � → B(F ,G) such that K has the factorization

K (ζ, ω) = H(ζ )H(ω)∗, ζ, ω ∈ �. (1.6)

When the conditions 1-3 hold, one Kolmogorov decomposition (often called canon-
ical) is produced by taking F = H(K ) as defined in item 2 and H(ζ ) equal to the
point-evaluation map

H(ζ ) = e(ζ ) : f �→ f (ζ ), f ∈ H(K ), ζ ∈ �.
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We will make frequent use of the following observation which is an immediate
consequence of the reproducing property (1.5):

Remark 1.2 In the notation of Theorem 1.1, assume that K is a reproducing kernel
for the Hilbert space H(K ). Then the linear span

span {ζ �→ K (ζ, ω)g|ω ∈ �, g ∈ G}

is dense in H(K ).

Given two separable Hilbert spaces U and Y , we let S(D;U ,Y) denote the Schur
class over the unit disk D consisting of functions φ : D → B(U ,Y) which are
holomorphic on D with values φ(z) equal to contraction operators from U into Y .
Given the Schur-class function φ on D, we associate the kernel

Ko(z, w) = 1 − φ(z)φ(w)∗

1 − zw
(1.7)

for z, w in the unit disk D. It is well known that Ko is a positive kernel; the proof is
similar to Sect. 2 below. By the Moore–Aronszajn Theorem [6, §2] (part of the proof
of Theorem 1.1) one can associate the reproducing-kernel Hilbert space Ho := H(Ko)

to the kernel function Ko. This space plays the role of the state space in the observable
co-isometric (co-energy-preserving) de Branges–Rovnyak canonical functional model
for a Schur class function φ. We note that this functional model is of interest not only
as an alternative to the Sz.-Nagy–Foiaş model [48] for contraction operators (see
[14,22,23]), but also has found applications in the context of Lax-Phillips scattering
theory [36] and inverse scattering theory [3,4] as well as boundary Nevanlinna-Pick
interpolation [19,41]. The following result can be found at least implicitly in the work
of de Branges–Rovnyak and is given explicitly in this form in [2] and in [12].

Theorem 1.3 Suppose that the function φ is in the Schur class S(D;U ,Y) and let
Ho = H(Ko) be the associated de Branges–Rovnyak space with reproducing kernel
(1.7). Define operators Ao, Bo, Co, and Do by

Ao f := z �→ f (z) − f (0)

z
, Bou := z �→ φ(z) − φ(0)

z
u,

Co f := f (0), Dou := φ(0)u,

f ∈ Ho, u ∈ U , z ∈ D.

(1.8)

Then the operator matrix Uo :=
[

Ao Bo
Co Do

]
has the following properties:

1. The operator Uo defines a co-isometry from
[ Ho

U
]

to
[

Ho
Y
]
.

2. The pair (Co, Ao) is an observable pair, i.e.,

CoAn
o f = 0 for all n = 0, 1, 2, . . . 
⇒ f = 0 as an element of Ho.

3. We recover φ(z) from
[

Ao Bo
Co Do

]
as φ(z) = Do + zCo(1 − zAo)

−1Bo, z ∈ D.
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4. If
[

A B
C D

] : [X
U
] → [X

Y
]

is another operator matrix with properties 1–3 above
(with X in place of Ho), then there is a unitary operator � : Ho → X so that

[
� 0
0 1Y

] [
Ao Bo

Co Do

]
=
[

A B
C D

] [
� 0
0 1U

]
.

If φ is in the Schur class S(D;U ,Y), then the function φ̃ defined by φ̃(z) :=
φ(z)∗, z ∈ D, lies in S(D;Y,U). Replacing φ by φ̃ in (1.7) leads to the dual de
Branges–Rovnyak kernel given by

Kc(z, w) := 1 − φ(z)∗φ(w)

1 − zw
. (1.9)

The Hilbert space associated to this kernel plays the role of the state-space in the
following controllable, isometric (energy-preserving) de Branges–Rovnyak canonical
functional model:

Theorem 1.4 Suppose that the function φ is in the Schur class S(D;U ,Y) and let
Hc = H(Kc) be the associated dual de Branges–Rovnyak space. Define operators
Ac, Bc, Cc, and Dc by

Acg := z �→ zg(z) − φ(z)∗g̃(0), Bcu := z �→ (
1 − φ(z)∗φ(0)

)
u,

Ccg := g̃(0), Dcu := φ(0)u,

g ∈ Hc, u ∈ U , z ∈ D,

(1.10)

where g̃(0) is the unique vector in Y such that

〈g̃(0), y〉Y =
〈
g, z �→ φ(z)∗ − φ(0)∗

z
y

〉

Hc

for all y ∈ Y . (1.11)

Then the operator matrix Uc :=
[

Ac Bc
Cc Dc

]
has the following properties:

1. The operator Uc defines an isometry from
[ Hc

U
]

to
[

Hc
Y
]
.

2. The pair (Ac, Bc) is a controllable pair, i.e.,

span
{
An

c Bcu|u ∈ U , n ≥ 0
} = Hc.

3. We recover φ(z) as φ(z) = Dc + zCc(1 − zAc)
−1Bc, z ∈ D.

4. If
[

A B
C D

] : [X
U
] → [X

Y
]

is another operator matrix with properties 1–3 above
(with X in place of Hc), then there is a unitary operator � : Hc → X so that

[
� 0
0 1Y

] [
Ac Bc

Cc Dc

]
=
[

A B
C D

] [
� 0
0 1U

]
.

The cases where the canonical model Uo and/or Uc is unitary can be characterized
as follows:
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Theorem 1.5 The following assertions are equivalent:

1. The co-isometric observable canonical model Uo is unitary.
2. The following two conditions both hold:

Ho ∩ {φ(·)u|u ∈ U} = {0} and (1.12)

φ(z)u = 0 for all z ∈ D 
⇒ u = 0. (1.13)

3. The maximal factorable minorant of 1 −φ(z)∗φ(z) is 0, i.e., the only holomorphic
a : D → B(U ,U ′) with the property

a(z)∗a(z) ≤ 1 − φ(z)∗φ(z), z ∈ C, |z| = 1

is a = 0.

The following assertions are also equivalent:

1. The isometry Uc is unitary.
2. The following two conditions both hold:

Hc ∩ {z �→ φ(z)∗y|y ∈ Y} = {0} and

φ(z)∗y = 0 for all z ∈ D 
⇒ y = 0.

3. The maximal factorable minorant of z �→ 1 − φ(z)φ(z)∗ is 0.

The equivalences of the conditions one and two can be found in [2, Thms 3.2.3 and
3.3.3]. For instance, one easily sees that the conditions (1.12) and (1.13) both hold if and
only if ker (Uo) = {0}. In order to prove that the third assertion is equivalent to unitarity
in the case of Uo, as a first step combine Lemma 8.2, Theorem 8.7, Corollary 8.8, and
Theorem 9.1 in [35] to see that the zero-maximal-factorable-minorant condition on

1−φ(·)∗φ(·) is equivalent to each column
[

Ao
Co

]
and

[
Bo
Do

]
of Uo being isometric. It is

then an elementary exercise to argue that the whole matrix Uo =
[

Ao Bo
Co Do

]
is isometric

if it is known to be contractive with each column isometric. The proof for the case of
Uc is the same, but with φ̃ in place of φ and with U∗

c in place of Uo.
In addition to the functional models in Theorems 1.3 and 1.4, there is also a unitary

functional model which combines Uo and Uc; see e.g. Brodskiı̆ [20].
There is a parallel but less well developed theory for the Schur class S(C+;U ,Y)

consisting of holomorphic functions on the right half plane C
+ with values equal to

contraction operators between the coefficient Hilbert spaces U and Y . See however
[28,30] as well as [16,31] for a more general algebraic curve setting. In general, if
the B(U ,Y)-valued function ϕ has the property that ϕ extends to be holomorphic in
a neighborhood of infinity rather than in a neighborhood of the origin, it is natural to
work with realizations of the form

ϕ(μ) = D + C(μ − A)−1 B. (1.14)
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It is well known that, given any B(U ,Y)-valued function holomorphic on a neighbor-
hood of ∞ in the complex plane, there is a Hilbert space X (the state space) and a
system matrix

U =
[

A B
C D

]
:
[X
U
]

→
[X
Y
]

so that ϕ has a representation as in (1.14). If we introduce the continuous-time
input/state/output linear system

�U :
{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t),

(1.15)

then application of the Laplace transform

x̂(μ) =
∞∫

0

e−μt x(t) dt (1.16)

leads to the relation

ŷ(μ) = ϕ(μ)̂u(μ)

whenever
(
u(·), x(·), y(·)) is a trajectory of the system (1.15) with state-vector x

satisfying the zero initial condition x(0) = 0.
The generalized form for the operator matrix U appropriate for the Schur class over

C
+ was first worked out by independently by Šmuljan [43] and Salamon [38,39].

Salamon gave a well-posed realization of an holomorphic function on C
+ which is

bounded on some complex right-half plane. Later, in [8], Arov-Nudelman specialized
to the case of a Schur function, giving a passive realization. The generalized form for U
has since been refined into the notion of scattering-conservative/energy-preserving/co-
energy-preserving system node; see [45] for a comprehensive treatment, and also
[15,44]. The analogue for the continuous-time setting of co-isometric system matrix
occurring in the discrete-time setting is a co-energy-preserving system node while the
analogue for the continuous-time setting of isometric system matrix occurring in the
discrete-time setting is an energy-preserving system node (precise definitions to come
in Sect. 3 below).

However, what has not been done to this point for the realization theory is the
analogues of Theorems 1.3 and 1.4 for ϕ in the Schur class over C

+. By using the
right-half plane versions of the de Branges–Rovnyak kernels Ko and Kc, namely,

Ko(μ, λ) = 1 − ϕ(μ)ϕ(λ)∗

μ + λ
, Kc(μ, λ) = 1 − ϕ(μ)∗ϕ(λ)

μ + λ
, (1.17)

combined with the precise formalism of scattering energy-preserving and scattering
co-energy-peserving system nodes, in this paper we obtain complete analogues of
Theorems 1.3 and 1.4 for the continuous-time setting. Due to complications with
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unbounded operators and rigged Hilbert spaces, the formulas and analysis have a
quite different flavor from that in the discrete-time/unit-disk setting.

The positivity of the kernels (1.17) is proved in Sect. 2, and in Sect. 5 we establish
the following continuous-time analogue of Theorem 1.3:

Theorem 1.6 Suppose that the function ϕ is in the Schur class S(C+;U ,Y) and let
Ho = H(Ko) be the associated de Branges–Rovnyak space with reproducing kernel
Ko in (1.17). Define the following unbounded operator, which maps a dense subspace

of
[

Ho
U
]

into
[Ho

Y
]
:

[
A&B
C&D

]

o
:
[

x
u

]
�→
[

z
y

]
, where (1.18)

z(μ) := μx(μ) + ϕ(μ)u − y, μ ∈ C
+, and (1.19)

y := lim
Re η→∞ ηx(η) + ϕ(η)u, defined on (1.20)

dom
([

A&B
C&D

]
o

) :=
{[

x
u

]
∈
[Ho

U
] ∣∣∣∣∃y ∈ Y : z defined in (1.19) lies in Ho

}
.

Then for every
[

x
u
] ∈ dom

([
A&B
C&D

]
o

)
, the y ∈ Y such that z given in (1.19) lies in Ho

is unique and it is given by (1.20). Moreover, the operator
[

A&B
C&D

]
o has the following

properties:

1. The operator
[

A&B
C&D

]
o is an observable co-energy-preserving system node.

2. The operator
[

A&B
C&D

]
o is a realization of ϕ, i.e., we recover ϕ(μ) through an appro-

priate generalization of (1.14).
3. If

[
A&B
C&D

] : [X
U
] ⊃ dom

([
A&B
C&D

]) → [X
Y
]

is another operator with properties
1–2 above (with X in place of Ho), then there is a unitary operator � : Ho → X
so that

[
� 0
0 1U

]
maps dom

([
A&B
C&D

]
o

)
one-to-one onto dom

([
A&B
C&D

])
and

[
� 0
0 1Y

] [
A&B
C&D

]

o
=
[

A&B
C&D

] [
� 0
0 1U

]
.

Hence the system nodes
[

A&B
C&D

]
and

[
A&B
C&D

]
o are unitarily similar.

It is also possible to decompose
[

A&B
C&D

]
o into unbounded operators Ao, Bo, and

Co which together with ϕ determine
[

A&B
C&D

]
o uniquely, similar to Theorem 1.3; see

Sect. 3.1 below. This involves a rigging of the state space and hence it is too techni-
cally involved to be presented in the introduction. We have the following analogue of
Theorem 1.4; the proofs and more details can be found in Sect. 4:

Theorem 1.7 Suppose that the function ϕ is in the Schur class S(C+;U ,Y) and let
Hc = H(Kc) be the associated de Branges–Rovnyak space with reproducing kernel

Kc in (1.17). There exists a system node
[

A&B
C&D

]
c :
[

Hc
U
]

⊃ dom
([

A&B
C&D

]
c

) →
[Hc

Y
]
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that for arbitrary
[

x
u
]

in its domain and λ ∈ C
+ satisfies

[
A&B
C&D

]

c

[
x
u

]
=
[
μ �→ −μx(μ) − ϕ(μ)∗γλ + (

1 − ϕ(μ)∗ϕ(λ)
)
u

γλ + ϕ(λ)u

]
, (1.21)

μ ∈ C
+, where γλ ∈ Y is uniquely determined by λ and

[
x
u
]
.

Moreover, the operator
[

A&B
C&D

]
c has the following properties:

1. The operator
[

A&B
C&D

]
c is a controllable energy-preserving system node.

2. The operator
[

A&B
C&D

]
c is a realization of ϕ, i.e., we recover ϕ(μ) through the

appropriate generalization of (1.14) mentioned earlier.
3. If

[
A&B
C&D

] : [X
U
] ⊃ dom

([
A&B
C&D

]) → [X
Y
]

is another operator matrix with proper-
ties 1–2 above (withX in place ofHc), then there is a unitary operator� : Hc → X
so that

[
� 0
0 1U

]
maps dom

([
A&B
C&D

]
c

)
one-to-one onto dom

([
A&B
C&D

])
and

[
� 0
0 1Y

] [
A&B
C&D

]

c
=
[

A&B
C&D

] [
� 0
0 1U

]
.

While the papers [8] and [44] worked with linear-fractional change of variables
to derive the continuous-time result from the discrete-time result, a more direct geo-
metric approach based on the “lurking isometry” technique was used in [15]. The
approach in the present paper is similar to the single-variable specialization of the
work of Ball-Bolotnikov [12] for the discrete-time setting, to some extent using intu-
ition from [29]. The main difference compared to [15] is that the canonical form of the
Kolmogorov factorization of the kernel Kc (as given in part 3 of Theorem 1.1) leads
to explicit functional formulas for the system nodes

[
A&B
C&D

]
o and

[
A&B
C&D

]
c above.

It should also be pointed out that conservative realizations are presented in [15]
(and many of the other references below), but in the present paper we study energy-
preserving and co-energy-preserving realizations, which are in a certain sense only
semi-conservative.

We mention that other work of de Branges–Rovnyak (the first part of [23]) and of
de Branges [22] uses reproducing kernel Hilbert spaces consisting of entire functions
based on positive kernels associated with Nevanlinna-class rather than Schur-class
functions. (The Nevanlinna class consists of holomorphic, even entire, functions map-
ping the upper half plane into an operator with positive imaginary part.) This leads to
models for symmetric operators with equal deficiency indices. See [17,18] for recent
developments in this direction, which is separate from what we pursue here.

Also in [17,18] a linear-fractional transformation is used to transfer knowledge of
Schur functions on D to Nevanlinna families on C\R. In the present article we avoid
the use of such transformations in the development of the realization theory in order
to expose the intricacies of the continuous-time case; only in Sect. 6 we describe how
to recover the original de Branges–Rovnyak models from the models we present in
Sects. 4 and 5 using a linear-fractional transformation. A functional model (as a self-
adjoint linear relation) for arbitrary normalized generalized Nevanlinna pairs has been
worked out directly in C\R in [34].
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A general unifying formulation of the de Branges–Rovnyak models has recently
been worked out by Arov-Kurula-Staffans (see [7]) for the continuous-time setting
as an extension to continuous time of the earlier discrete-time realization results in
[10,11]. It is possible to derive Theorems 1.6 and 1.7 from [7] and the method, outlined
in Sect. 7 below, is in principle straightforward. However, filling in the details is a
rather lengthy process, and for this reason we have chosen to give direct proofs of
Theorems 1.6 and 1.7 here that do not rely on [7].

There have also been a number of extensions of Theorems 1.3 and 1.4 to multi-
variable settings; see [12] for ball and polydisk versions and [1,13] for polyhalfplane
versions.

Notation

C
+: The complex right-half plane {λ ∈ C|Re λ > 0}

(·, ·)X , ‖ · ‖X : The inner product and norm of X , respectively
span �: The linear span of the set �; a bar on the word span denotes the

closed linear span
B(U ,Y),B(U): The space of bounded linear operators from U to Y and on U ,

respectively
dom (A), im

(
A
)
: The domain and range of the operator A

ker (A), res (A): The null-space and the resolvent set of the operator A
X1 ⊂ X ⊂ X−1: Rigged Hilbert spaces associated to A : X ⊃ dom (A) → X ,

with norms constructed using some β ∈ C
+

X d
1 ⊂ X ⊂ X d−1: The rigged Hilbert spaces associated to A∗, with norms con-

structed using β ∈ C
+, where β is used in the rigging corre-

sponding to A. X d±1 is identified with the dual of X∓1 using X as
pivot space

A|X : The unique extension of the operator A ∈ B(X1,X ) to an operator
in B(X ,X−1)

1X , 1: The identity operator on X
U ,Y: Separable Hilbert spaces, the input and output space, respectively[X

U
]
: The orthogonal direct sum of the Hilbert spaces X and U

e(μ): The (bounded) point-evaluation operator in H2(C+;U) and
H2(C+;Y)

e(λ)∗: The (bounded) adjoint of e(λ). Premultiplies an element of C or
a vector space by the (scalar) kernel k(μ, λ) = 1

μ+λ
of H2(C), so

that e(λ)∗u is the function μ �→ u
μ+λ

, μ, λ ∈ C
+, u ∈ U

S(C+;U ,Y): The Schur class on the right-half plane which consists of B(U ,Y)-
valued holomorphic functions whose values are contractions

Mϕ : The multiplication operator on H2(C+;U) with symbol ϕ ∈
S(C+;U ,Y), i.e., (Mϕ f )(λ) = ϕ(λ) f (λ), λ ∈ C

+
[

A&B
C&D

]
o: The observable co-energy-preserving functional model for ϕ ∈

S(C+;U ,Y)

Ko: The reproducing kernel Ko(μ, λ) = 1Y−ϕ(μ)ϕ(λ)∗
μ+λ

; takes values

in B(Y)
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Ho: The de Branges space with reproducing kernel Ko. This is the state
space for

[
A&B
C&D

]
o and it is contractively contained in H2(C+;Y)

eo(μ): The point-evaluation operator in Ho

eo(λ)∗: The adjoint of eo(λ), maps y ∈ Y into Ko(·, λ)y, λ ∈ C
+

ϕ̃: The function ϕ̃(μ) = ϕ(μ)∗, μ ∈ C
+, which is an element of

S(C+;Y,U) if ϕ ∈ S(C+;U ,Y)

ι: Embedding operator[
A&B
C&D

]
c: The controllable energy-preserving functional model for ϕ ∈

S(C+;U ,Y)

Kc: The reproducing kernel Kc(μ, λ) = 1U−ϕ̃(μ)ϕ̃(λ)∗
μ+λ

; takes values in

B(U)

Hc: The de Branges space with reproducing kernel Kc. This is the state
space for the

[
A&B
C&D

]
c, contractively contained in H2(C+;U)

ec(μ): The point-evaluation operator in Hc

ec(λ)∗: The adjoint of ec(λ), maps u ∈ U into Kc(·, λ)u, λ ∈ C
+

�: Unitary intertwinement operator from Ho or Hc to some Hilbert
space X

�α: Unitary intertwinement operator from Ho,α to Ho or from Hc,α to
Hc

2 The de Branges–Rovnyak Spaces Ho and Hc Over C
+

The topic of this section is the development of the state spaces of the functional models
presented in the introduction. We begin by proving that the kernels (1.17) are positive
kernels, and therefore reproducing kernels of Ho and Hc. The reader is assumed to be
familiar with Hardy spaces over C

+; otherwise see e.g. [21, Sect. A.6]. It is important
that U and Y are separable.

Every ϕ ∈ S(C+;U ,Y) lies in H∞(C+;B(U ,Y)) and therefore the multiplication
operator Mϕ with symbol ϕ maps H2(C+;U) into H2(C+;Y), and ‖Mϕ‖ = ‖ϕ‖H∞ ;
see [21, Theorem A.6.26]. We need the following lemma in order to show that the
kernel Ko(μ, λ) is positive:

Lemma 2.1 Let ϕ ∈ S(C+;U ,Y) and denote the point-evaluation operator in
H2(C+;Y) by eH2(C+;Y)(·). The following claims are true:

1. The adjoint of eH2(C+;Y)(λ) is the operator of premultiplication with the repro-
ducing kernel kY of H2(C+;Y):

e(λ)∗y = μ �→ kY (μ, λ)y, y ∈ Y, μ, λ ∈ C
+, kY (μ, λ) = 1Y

μ + λ
.

2. The operator M∗
ϕ has the following action on the kernel functions in H 2(C+;Y):

M∗
ϕ eH2(C+;Y)(λ)∗y = eH2(C+;U)(λ)∗ ϕ(λ)∗y, λ ∈ C

+, y ∈ Y .
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3. The function Ko defined in (1.17) can be factored as

Ko(μ, λ) = eH2(C+;Y)(μ) (1H2(C+;Y) − Mϕ M∗
ϕ) eH2(C+;Y)(λ)∗,

μ, λ ∈ C
+.

(2.1)

In the sequel we simplify the notation, so that k(·, λ) denotes a kernel function in
H2(C+;U), H2(C+;Y), or H2(C+; C), where it is clear from the context which one
to choose. Similarly, the point-evaluation operator at μ on a possibly vector-valued
H2 space is simply denoted by e(μ).

Proof We have the following short arguments:

1. It follows from residue calculus that k is the reproducing kernel of H2(C+); see
[25]. That e(λ)∗y = k(·, λ)y then follows from the reproducing kernel property
(1.5).

2. As probably first observed in [42], by the reproducing kernel property (1.5), we
have for all u ∈ H2(C+;U), y ∈ Y , and λ ∈ C

+:

(
u, M∗

ϕe(λ)∗y
)

H2(C+;U)
= (

Mϕu, e(λ)∗y
)

H2(C+;Y)
= (

(Mϕu)(λ), y
)
Y

= (ϕ(λ)u(λ), y)Y = (
u, e(λ)∗ϕ(λ)∗y

)
U .

3. For all μ, λ ∈ C
+ and y, γ ∈ Y , by using assertion 2 (in the fourth equality) we

have:

(Ko(μ, λ)y, γ )Y =
(

1

μ + λ
y, γ

)

Y
−
(

ϕ(μ)ϕ(λ)∗

μ + λ
y, γ

)

Y
= (k(μ, λ)y, γ )Y − (

k(μ, λ)ϕ(λ)∗y, ϕ(μ)∗γ
)
U

= (
e(λ)∗y, e(μ)∗γ

)
H2(C+;Y)

− (
e(λ)∗ϕ(λ)∗y, e(μ)∗ϕ(μ)∗γ

)
H2(C+;U)

= (
e(λ)∗y, e(μ)∗γ

)
H2(C+;Y)

− (
M∗

ϕe(λ)∗y, M∗
ϕe(μ)∗γ

)
H2(C+;U)

= (
(1 − Mϕ M∗

ϕ)e(λ)∗y, e(μ)∗γ
)

H2(C+;Y)

= (
e(μ)(1 − Mϕ M∗

ϕ)e(λ)∗y, γ
)
Y ,

(2.2)

and this completes the proof. ��
Using this lemma it is easy to show that Ko is a positive kernel.

Theorem 2.2 If ϕ ∈ S(C+;U ,Y), then the function Ko(μ, λ) defined in (1.17) is a
positive kernel.

Proof For ϕ ∈ S(C+;U ,Y), the multiplication operator Mϕ : H2(C+;U) →
H2(C+;Y) is contractive, ‖Mϕ‖ ≤ 1, since ‖ϕ‖H∞(C+) ≤ 1. Hence 1 − Mϕ M∗

ϕ ≥ 0
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as an operator on H2(C+;Y) and thus it has a bounded positive square root
(1 − Mϕ M∗

ϕ)1/2 on H2(C+;Y). From the identity (2.1) we see that Ko(μ, λ) has
a Kolmogorov decomposition (1.6) with

H(μ) = e(μ)(1 − Mϕ M∗
ϕ)1/2 : H(Ko) → Y .

We conclude from Theorem 1.1 that Ko is a positive kernel. ��
We denote the Hilbert space with reproducing kernel Ko by Ho := H(Ko). Replac-

ing ϕ by ϕ̃(μ) := ϕ(μ)∗, μ ∈ C
+, and swapping the roles of U and Y , we turn the

kernel Ko into the kernel Kc in (1.17). Applying Lemma 2.1 and Theorem 2.2 to ϕ̃,
we obtain the following result:

Corollary 2.3 If ϕ ∈ S(C+;U ,Y) then the B(U)-valued function Kc(μ, λ) is a
positive kernel on C

+×C
+. Denoting Hc := H(Kc), we have that the kernel functions

of Hc and H2(C+;U) are related by Kc(·, λ)u = (1− Mϕ̃ M ∗̃
ϕ) k(·, λ)u for all λ ∈ C

+
and u ∈ U .

An equivalent way of defining Ho is to set

Ho :=
{

f : C
+ →

holomorphic
Y∣∣‖ f ‖Ho < ∞

}
,

and to define the norm in Ho by

‖ f ‖2
Ho

:= sup
{
‖ f + Mϕ g‖2

H2(C+;Y)
− ‖g‖2

H2(C+;U)

∣∣g ∈ H2(C+;U)
}
.

It can be shown that this norm equals the norm induced by the reproducing kernel Ko.
This corresponds to the original definition of Ho by de Branges and Rovnyak. To give
the uninitiated reader better perspective on de Branges–Rovnyak spaces, we further
mention the following well-known operator-range characterization of Ho and Hc. For
further development of this point of view in the unit disk setting see e.g. [41].

Theorem 2.4 Let ϕ be a function in the Schur class S(C+;U ,Y). Then:

1. The space Ho can be identified as a set with the operator range

Ho = im
(
(1 − Mϕ M∗

ϕ)1/2) ⊂ H2(C+;Y) (2.3)

with norm given by

∥
∥(1 − Mϕ M∗

ϕ)1/2g
∥
∥Ho

= ‖Qg‖H2(C+;Y), g ∈ H2(C+;Y), (2.4)

where Q is the orthogonal projection of H2(C+;Y) onto
(
ker

(
1 − Mϕ M∗

ϕ

))⊥
.

2. The inclusion map

ι : f ∈ Ho �→ f ∈ H2(C+; ,Y)
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is contractive, i.e.,

‖ f ‖H2(C+;Y) ≤ ‖ f ‖Ho for all f ∈ Ho,

with adjoint ι∗ : H2(C+;Y) → Ho given by

ι∗ = 1 − Mϕ M∗
ϕ.

Analogous results with Hc in place of Ho are obtained by replacing ϕ by ϕ̃.

Proof The result is well known among experts but we provide a proof for the sake of
completeness. The first step is to prove Assertion 1.

Define the space H̃o by

H̃o := im
(
1 − Mϕ M∗

ϕ)1/2) ⊂ H2(C+;Y)

with norm given by (2.4) and let f ∈ H̃o. Set W = 1 − Mϕ M∗
ϕ on H2(C+;Y),

so that H̃o = im
(
W 1/2

)
. From (2.1) we see that eo(λ)∗ = W e(λ)∗, so in particular

eo(λ)∗y ∈ H̃o for each λ ∈ C
+ and y ∈ Y . Furthermore, for f = W 1/2g ∈ H̃o, we

compute using (2.4):

〈 f, eo(λ)∗y〉H̃o
= 〈W 1/2g, W e(λ)∗y〉H̃o

= 〈Qg, QW 1/2e(λ)∗y〉H2(C+;Y)

= 〈W 1/2g, e(λ)∗y〉H2(C+;Y) = 〈 f (λ), y〉Y .

This shows that eo(λ)∗ = Ko(·, λ) works as the reproducing kernel for the space H̃o,
and since the positive kernel eo(λ)∗ determines its reproducing kernel Hilbert space
uniquely, we conclude that Ho = H̃o.

Contractive containment of Ho in H2(C+;Y) follows from the following observa-
tion:

‖ f ‖H0 = ‖g‖H2(C+;Y) ≥ ‖(1 − Mϕ M∗
ϕ)1/2 g‖H2(C+;Y) = ‖ f ‖H2(C+;Y),

where we used that 1 − Mϕ M∗
ϕ is contractive on H2(C+;Y).

Since eo(λ) is the restriction of eH2(C+;Y) to Ho, the identity (2.1) amounts to the
operator identity

eo(λ)∗ = (1 − Mϕ M∗
ϕ)e(λ)∗, λ ∈ C

+. (2.5)

Using (2.5), we obtain that ι∗e(λ)∗y = (1− Mϕ M∗
ϕ) e(λ)∗y for all λ ∈ C

+ and y ∈ Y .
Indeed, it holds for all x ∈ Ho that

(
(1 − Mϕ M∗

ϕ) e(λ)∗y, x
)
Ho

= 〈y, x(λ)〉Y = (
e(λ)∗y, ιox

)
H2(C+;Y)

,

and taking limits of finite linear combinations of e(λk)
∗yk , we obtain that ι∗ = 1 −

Mϕ M∗
ϕ . ��
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Recall that ϕ ∈ S(C+;U ,Y) is called inner if ϕ has isometric boundary values
a.e. on the imaginary line.

Corollary 2.5 If ϕ is inner, then Mϕ is isometric from H2(C+;U) into H2(C+;Y),
and (1 − Mϕ M∗

ϕ)1/2 = 1 − Mϕ M∗
ϕ . The operator 1 − Mϕ M∗

ϕ is the orthogonal

projection of H2(C+;Y) onto H2(C+;Y) � (
Mϕ H2(C+;U)

)
and this orthogonal

complement equals Ho isometrically.

Proof That Mϕ is isometric follows from

(
Mϕ f, Mϕ f

)
H2(C+;Y)

= 1

2π

∫

R

(ϕ(iω) f (iω), ϕ(iω) f (iω))Y dω

= ( f, f )H2(C+;U).

From the isometricity of Mϕ it follows that (1 − Mϕ M∗
ϕ)2 = 1 − Mϕ M∗

ϕ ≥ 0,
so that (1 − Mϕ M∗

ϕ)1/2 = 1 − Mϕ M∗
ϕ . This is the orthogonal projection onto

(
Mϕ H2(C+;U)

)⊥, since Mϕ M∗
ϕ is the orthogonal projection onto Mϕ H2(C+;U).

By (2.3), Ho = im
(
1 − Mϕ M∗

ϕ

) = ker
(
1 − Mϕ M∗

ϕ

)⊥ and hence Q in (2.4) coin-
cides with 1 − Mϕ M∗

ϕ . Then (2.4) precisely says that Ho is isometrically contained in
H2(C+;Y). ��

When ϕ is not inner, Mϕ H2(C+;U) and Ho are not orthogonal in H2(C+;Y), but
more general complements in the sense of de Branges, cf. [5] or [2, §1.5].

The following limits will be encountered frequently in the sequel.

Proposition 2.6 Every x in H2(C+;Y) satisfies x(μ) → 0 in Y as Re μ → +∞.
More precisely,

‖x(μ)‖Y ≤ ‖x‖H2(C+;Y)√
2Re μ

, μ ∈ C
+. (2.6)

It also holds that

‖x(μ)‖Y ≤ ‖x‖Ho√
2Re μ

, μ ∈ C
+, (2.7)

and in particular the only constant function in Ho is the zero function. The corre-
sponding claims hold for H2(C+;U) and Hc.

Proof We verify the assertion only for H2(C+;Y) and Ho. By the Cauchy-Schwarz
inequality, we have for all x ∈ H2(C+;Y) that

| (x(μ), y)Y | = ∣∣ (x, e(μ)∗y
)

H2(C+;Y)

∣∣

≤ ‖x‖H2(C+;Y)‖e(μ)∗y‖H2(C+;Y)
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= ‖x‖H2(C+;Y)

(
e(μ)∗y, e(μ)∗y

)1/2
H2(C+;Y)

= ‖x‖H2(C+;Y)

(
1

μ + μ
y, y

)1/2

Y

≤ ‖x‖H2(C+;Y)‖y‖Y√
2Re μ

, μ ∈ C
+.

From here we obtain (2.6):

‖x(μ)‖Y = sup
0 �=y∈Y

| (x(μ), y)Y |
‖y‖ ≤ ‖x‖H2(C+;Y)√

2Re μ
, μ ∈ C

+.

Now (2.7) follows from (2.6) combined with the facts Ho ⊂ H2(C+;Y) and
‖x‖H2(C+;Y) ≤ ‖x‖Ho for all x ∈ Ho; see Theorem 2.4. ��

3 Background on System Nodes

In this section we recall the needed concepts from the theory of infinite-dimensional
linear systems in continuous time. A comprehensive exposition of this theory can be
found e.g. in [45] and coordinate-free versions of some of the results are in [29]. For
more details on the following few paragraphs, see Definition 3.2.7 and Section 3.6 of
[45].

3.1 Definition of a System Node and its Transfer Function

The resolvent set res (A) of a closed operator A on the Hilbert space X is the set of all
μ ∈ C such that μ − A maps dom (A) one-to-one onto X . The generator A of a C0
semigroup is closed and dom (A) dense in X ; see e.g. [37, Theorem 1.2.7]. Moreover,
the resolvent set of a C0 semigroup generator contains some complex right-half plane.
For such a generator, dom (A) is a Hilbert space with the inner product

(x, z)dom(A) = ((β − A)x, (β − A)z)X , (3.1)

where β is some fixed but arbitrary complex number in res (A).
Thus X1 := dom (A) with the norm ‖x‖1 := ‖(β − A)x‖X is a dense subspace

of X . It follows immediately from (3.1) that A maps dom (A) = X1 with this norm
continuously into X . Denote by X−1 the completion of X with respect to the norm
‖x‖−1 = ‖(β− A)−1x‖X . The operator A can then also be considered as a continuous
operator which maps the dense subspace X1 of X into X−1, and we denote the unique
continuous extension of A to an operator X → X−1 by A|X . Note that res (A) =
res (A|X ) and that (β − A|X )−1 maps X−1 unitarily onto X .

The triple X1 ⊂ X ⊂ X−1 is called a Gelfand triple, and the three spaces are also
said to be rigged. The spaces X−1 corresponding to two different choices ofβ ∈ res (A)

can be identified with each other as topological vector spaces, and although the norms
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will be different they are equivalent to each other. The norms of X1 corresponding to
two different choices of β ∈ res (A) will also be equivalent. Hence (α − A)−1 is an
isomorphism from X to X1 and (α − A|X ) is an isomorphism from X to X−1 for all
α ∈ res (A), and these operators are unitary for α = β.

Definition 3.1 A linear operator

[
A&B
C&D

]
:
[X
U
]

⊃ dom
([

A&B
C&D

])
→
[X
Y
]

(which is in general unbounded) is called a system node on the triple (U ,X ,Y) of
Hilbert spaces if it has all of the following properties:

1. The operator
[

A&B
C&D

]
is closed.

2. The operator

Ax := [
A&B

] [x
0

]
defined on

dom (A) :=
{

x ∈ X
∣
∣∣∣

[
x
0

]
∈ dom

([
A&B
C&D

])}
,

(3.2)

is the generator of a C0-semigroup on X .
3. The operator

[
A&B

]
can be extended to an operator

[
A|X B

]
that maps

[X
U
]

continuously into X−1.
4. The domain of

[
A&B
C&D

]
satisfies the condition

dom
([

A&B
C&D

])
=
{[

x
u

]
∈
[X
U
] ∣∣∣∣A|X x + Bu ∈ X

}
.

When these conditions are satisfied, U , X , and Y are called the input space, state
space, and output space, respectively, of the system node.

It was mentioned in the introduction that the definition of the operator-valued func-
tion μ �→ C(μ− A)−1 B + D can be extended to arbitrary system nodes. This is often

done as follows. By [45, Lemma 4.7.3],
[

1 (α−A|X )−1 B
0 1

]
maps

[
dom(A)

U
]

one-to-one

onto dom
([

A&B
C&D

])
for every system node

[
A&B
C&D

]
and α ∈ res (A), and this allows us

to express the domain of
[

A&B
C&D

]
as

dom

([
A&B
C&D

])
=
[

dom (A)

{0}
]

�
[
(α − A|X )−1 B

1

]
U (3.3)

Note in particular that
[

(α−A|X )−1 B
1

]
maps U into the domain of

[
A&B
C&D

]
. The following

is [45, Definition 4.7.4]:

Definition 3.2 The operators A and B in Definition 3.1 are the main operator and
control operator of the system node

[
A&B
C&D

]
, respectively. The observation operator

C : dom (A) → Y of
[

A&B
C&D

]
is the operator
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Cx := [
C&D

] [x
0

]
, x ∈ dom (A), (3.4)

and the transfer function D̂ : res (A) → B(U ,Y) of
[

A&B
C&D

]
is the operator-valued

holomorphic function

D̂(μ) := [
C&D

] [(μ − A|X )−1 B
1

]
, μ ∈ res (A). (3.5)

By a realization of a given analytic function ϕ, we mean a system node
[

A&B
C&D

]

whose transfer function D̂ coincides with ϕ on some right-half plane

C
+
ω := {μ ∈ C|Re μ > ω} ⊂ res (A) ∩ dom (ϕ), ω ∈ R.

Regarding the last sentence of Definition 3.2, we consider two analytic functions
f and g with dom ( f ) , dom (g) ⊂ C to be identical if there exists some complex
right-half plane C

+
ω ⊂ dom ( f ) ∩ dom (g), such that f and g coincide on C

+
ω . In this

paper we can usually take ω = 0, so that C
+
ω = C

+.
Since (α − A)−1 maps X one-to-one onto dom (A), we have that the opera-

tor
[

(α−A)−1 (α−A|X )−1 B
0 1

]
maps

[X
U
]

one-to-one onto dom
([

A&B
C&D

])
for every α ∈

res (A), cf. (3.3). The system node satisfies

[
A&B
C&D

] [
(α − A)−1x (α − A|X )−1 Bu

0 u

]

=
[

A(α − A)−1x α(α − A|X )−1 Bu
C(α − A)−1x D̂(α)u

]
(3.6)

for all α ∈ res (A) and x ∈ X , u ∈ U . By the closed graph theorem, C(α − A)−1 is
bounded from X into Y , and therefore C maps dom (A) boundedly into Y . Similarly,
D̂(α) is bounded from U into Y for all α ∈ res (A). It is part of condition 3 in
Definition 3.1 that B maps U boundedly into X−1.

The Eq. (3.6) can equivalently be written, still for arbitrary α ∈ res (A):

[
A&B
C&D

]
=
[

A(α − A)−1 α(α − A|X )−1 B
C(α − A)−1 D̂(α)

]

×
[
(α − A)−1 (α − A|X )−1 B

0 1

]−1 ∣∣
∣∣
dom

([
A&B
C&D

])

=
[

A α(α − A|X )−1 B
C D̂(α)

]

×
[

1 −(α − A|X )−1 B
0 1

] ∣∣∣∣
dom

([
A&B
C&D

]),

(3.7)
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where dom
([

A&B
C&D

])
is given in (3.3). In particular,

[
C&D

] [x
u

]
= C

(
x − (α − A|X )−1 Bu

)+ D̂(α)u,

[
x
u

]
∈ dom

([
A&B
C&D

])
,

(3.8)

for an arbitrary α ∈ res (A).

Remark 3.3 By [45, Lem. 4.7.6], we can reconstruct a system node
[

A&B
C&D

]
from

its operators A, B, C , and D̂(α), for one arbitrary α ∈ res (A), in the following
way: The space X−1 is obtained as the co-domain of B, and we can then extend
A : dom (A) → X continuously into A|X : X → X−1. Then we define A&B via:

dom
([

A&B
]) :=

{[
x
u

]
∈
[X
U
] ∣∣∣∣A|X x + Bu ∈ X

}
,

[
A&B

] := [
A|X B

] ∣∣
∣
dom

([
A&B
C&D

]),

and finally we define
[
C&D

]
on dom

([
A&B

]) = dom
([

C&D
])

by (3.8).

3.2 Controllability and Observability

We will use the following variants of controllability and observability:

Definition 3.4 Let
[

A&B
C&D

]
be a system node and denote the component of res (A) that

contains some right-half plane by ρ∞(A).
We say that

[
A&B
C&D

]
is controllable if

span
{
(μ − A|X )−1 Bu|μ ∈ ρ∞(A), u ∈ U

}

is dense in the state space X . The system node
[

A&B
C&D

]
is observable if

⋂

μ∈ρ∞(A)

ker
(
C(μ − A)−1) = {0} .

As a consequence of [45, Cor. 9.6.2 and 9.6.5], it suffices to take the linear span or
intersection only over a subset � ⊂ ρ∞(A) with a cluster point in ρ∞(A) instead of
over the whole set ρ∞(A); we obtain the following:

Lemma 3.5 Let
[

A&B
C&D

]
be a controllable system node on (U ,X ,Y) and fix α ∈

res (A) arbitrarily. Assume that � ⊂ ρ∞(A) has a cluster point in ρ∞(A). Then the
linear span

span
{
(μ − A|X )−1 Bu − (α − A|X )−1 Bu|μ ∈ �, u ∈ U

}
(3.9)

is a dense subspace of both dom (A) (with respect to the graph norm of A) and of X ,
and the linear span
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span

{[
(μ − A|X )−1 Bu

u

] ∣∣∣∣μ ∈ �, u ∈ U
}

(3.10)

is a dense subspace of dom
([

A&B
C&D

])
with respect to the graph norm of

[
A&B
C&D

]
.

Proof Let E denote the linear span in (3.9). For μ ∈ � and u ∈ U , the resolvent
identity gives

(
(μ − A|X )−1 Bu − (α − A|X )−1)Bu

= (α − μ)(α − A)−1(μ − A|X )−1 Bu ∈ dom (A) ,

Here (α − A)−1 is an isomorphism from X to dom (A), and so E is dense in dom (A)

if and only if

span
{
(α − μ)(μ − A|X )−1 Bu|μ ∈ �, u ∈ U

}
(3.11)

is dense in X . It is easy to see that this linear span is the same as

span
{
(μ − A|X )−1 Bu|μ ∈ �\ {α} , u ∈ U

}
,

and this space is dense in X , since �\{α} has a cluster point in ρ∞(A) and
[

A&B
C&D

]
is

assumed controllable. We have proved that (3.9) is dense in dom (A). Since dom (A)

is dense in X , it now follows automatically that (3.9) is dense in X .
According to [45, Lemma 4.7.3(ix)], the following norm is equivalent to the norm

on dom
([

A&B
C&D

])
induced by the graph of

[
A&B
C&D

]
:

∥∥∥∥

[
x
u

]∥∥∥∥
α

:=
∥∥∥∥

[
1 −(α − A|X )−1 B
0 1

] [
x
u

]∥∥∥∥[ dom(A)
U

] ,

where dom (A) is equipped with the graph norm of A. Therefore the denseness of
(3.10) follows if we can show that

[
1 −(α − A|X )−1 B
0 1

]
span

{[
(μ − A|X )−1 Bu

u

] ∣∣∣∣μ ∈ �, u ∈ U
}

(3.12)

is dense in
[

dom(A)
U

]
.

Fix
[

x
u
] ∈

[
dom(A)

U
]

arbitrarily. We will show that
[

x
u
]

can be approximated arbi-

trarily well by an element of the linear span in (3.12), in the norm of
[

dom(A)
U

]
. By

the above, we can approximate x by an element in E , say

‖x − xN ‖dom(A) < ε, with xN =
N∑

k=1

(μk − A|X )−1 Buk − (α − A|X )−1 Buk .
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Setting vN := u −∑N
k=1 uk , we obtain

∥∥∥
∥

[
x
u

]
−
[

1 −(α − A|X )−1 B
0 1

] N∑

k=1

[
(μk − A|X )−1 Buk

uk

]

−
[

1 −(α − A|X )−1 B
0 1

] [
(α − A|X )−1 BvN

vN

] ∥∥
∥∥[ dom(A)

U
]

=
∥∥∥∥

[
x − xN

0

] ∥∥∥∥[ dom(A)
U

] < ε,

and hence the linear span in (3.10) is dense in dom
([

A&B
C&D

])
. ��

We next recall some properties of (scattering) passive systems, including some very
recent developments.

3.3 Scattering Dissipative Operators and Passive System Nodes

The following is a recent idea from [46, Def. 2.1]; see also [47,50]:

Definition 3.6 An operator
[

A&B
C&D

] : [X
U
] ⊃ dom

([
A&B
C&D

]) → [X
Y
]

is called scat-
tering dissipative if it satisfies for all

[
x
u
] ∈ dom

([
A&B
C&D

])
:

(z, x)X + (x, z)X ≤ (u, u)U − (y, y)Y ,

[
z
y

]
=
[

A&B
C&D

] [
x
u

]
. (3.13)

If such an operator
[

A&B
C&D

]
has no proper extension which still satisfies (3.13), then[

A&B
C&D

]
is said to be maximal scattering dissipative. If (3.13) holds with equality then

[
A&B
C&D

]
is called scattering isometric.

Note that
[

A&B
C&D

]
is scattering isometric if and only if for all

[ x1
u1

]
,
[ x2

u2

] ∈
dom

([
A&B
C&D

])
:

(z1, x2)X + (x1, z2)X = (u1, u2)U − (y1, y2)Y ,
[

zk

yk

]
=
[

A&B
C&D

] [
xk

uk

]
,

(3.14)

as can be seen by polarizing (3.13), i.e., by considering
[

x
u
] = [ x1

u1

] + λ
[ x2

u2

]
and

letting λ vary over C.
The following definition differs from the standard definition of a passive system

node, but combining the fact that res (A) contains some right-half plane with [45,
Theorem 11.1.5], see in particular assertion (iii), we obtain that the two definitions are
equivalent:

Definition 3.7 A system node is said to be passive if it is a scattering dissipative
operator. The system node is energy preserving if it is scattering isometric.
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The type of passivity in Definition 3.7 is commonly called scattering passivity,
where the word “scattering” refers to the fact that we use the expression ‖u(t)‖2 −
‖y(t)‖2 to measure the power absorbed by the system from its surroundings at time
t ≥ 0. See the introduction to [44] for more details on this.

Lemma 3.8 Let
[

A&B
C&D

]
be a scattering dissipative operator mapping its domain

dom
([

A&B
C&D

]) ⊂ [X
U
]

into
[X

Y
]
. Then

[
A&B
C&D

]
is a system node if and only if it is

closed and
[

[ 1 0 ]−[ A&B ]
[ 0

√
2 ]

]
maps dom

([
A&B
C&D

])
onto a dense subspace of

[X
U
]
. When

this is the case,
[

A&B
C&D

]
is passive.

Proof We begin with the if direction. Assume therefore that
[

A&B
C&D

]
is a closed scat-

tering dissipative operator and that
[

[ 1 0 ]−[ A&B ]
[ 0

√
2 ]

]
dom

([
A&B
C&D

])
is dense in

[X
U
]
.

Then the so-called internal Cayley transform

T :=
[−1 0

0 0

]
+
([√

2 0
0 0

]
+
[

0[
C&D

]
])

E−1,

defined on dom (T) := im
(
E
)
, where

E =
[

1/
√

2 0
0 1

]
−
[[

A&B
]
/
√

2
0

]
, dom (E) = dom

([
A&B
C&D

])
,

is contractive (on its domain) by Lemma 2.2, Theorem 2.3(i), and the text in between, in

[46]. Moreover, dom (T) =
[

[ 1 0 ]−[ A&B ]
[ 0

√
2 ]

]
dom

([
A&B
C&D

])
, dense in

[X
U
]

by assump-

tion. By [46, Thm 2.3](iv), it follows from the closedness of
[

A&B
C&D

]
that dom (T) is

closed, and hence dom (T) = [X
U
]
. This in turn implies that T has no proper extensions

to a contraction on
[X

U
]
, and therefore

[
A&B
C&D

]
has no scattering dissipative extension

by [46, Thm 2.3(iii)]. Hence,
[

A&B
C&D

]
is maximal scattering dissipative. Theorem 2.5

of [46] now gives that
[

A&B
C&D

]
is a passive system node.

Conversely, for the only-if direction, assume that
[

A&B
C&D

]
is a scattering-dissipative

system node, i.e., a passive system node according to Definition 3.7. Then [46, Thm 2.5]
gives that

[
A&B
C&D

]
is closed and maximal scattering dissipative, and now [46, Thm 2.4]

finally yields that dom (T) = [X
U
]
. ��

Lemma 3.9 For a passive system node with state space X and main operator A, we
have C

+ ⊂ res (A) = res (A|X ).

This lemma follows from [45, Theorem 11.1.5(viii)] and the rigging procedure
described at the beginning of Sect. 3. Hence, when discussing controllability and
observability of passive systems, we always take ρ∞(A) = C

+.

3.4 Dual System Nodes

If A generates a C0-semigroup A on the Hilbert space X , then A∗ generates the
C0-semigroup t �→ (At )∗, according to [45, Theorem 3.5.6]. Clearly res (A∗) =
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{μ ∈ C|μ ∈ res (A)}, and we denote the Gelfand triple corresponding to A∗ and β ∈
res (A∗) by X d

1 ⊂ X ⊂ X d−1, where β ∈ res (A) is used in the rigging X1 ⊂ X ⊂ X−1.
In particular, X d

1 = dom (A∗).
This makes it possible to identify the dual of X1 = dom (A) with X d−1 using X as

pivot space:

〈x, z〉〈X1,X d−1〉 := (x, z)X , x ∈ X1, z ∈ X .

Similarly, the dual of dom (A∗) is identified with X−1 using X as pivot space.

Proposition 3.10 Every system node
[

A&B
C&D

]
on the triple (U ,X ,Y) of Hilbert-spaces

has the following properties:

1. The adjoint
[

A&B
C&D

]∗
is a system node on (Y,X ,U). The main operator of

[
A&B
C&D

]∗

is Ad = A∗, the control operator is Bd = C∗ ∈ B(Y,X d−1), the observation

operator is Cd = B∗ ∈ B(X d
1 ,U), and the transfer function satisfies D̂d(λ) =

D̂(λ)∗ for all λ ∈ res (A∗), where D̂ is the transfer function of
[

A&B
C&D

]
.

2. The system node
[

A&B
C&D

]
is passive if and only if

[
A&B
C&D

]∗
is passive.

3. The system node
[

A&B
C&D

]
is controllable if and only if

[
A&B
C&D

]∗
is observable and

vice versa.

For a proof of the first statement see [45, Lemma 6.2.14]. The second statement
follows from [45, Lemma 11.1.4]; note that passivity implies well-posedness. The
third claim follows immediately on combining the first statement with Definition 3.4.

Definition 3.11 The (possibly unbounded) adjoint
[

Ad &Bd

Cd &Dd

]
:= [

A&B
C&D

]∗ of a system

node
[

A&B
C&D

]
is called the causal dual system node, or shortly just the dual, of

[
A&B
C&D

]
.

We say that a system node is co-energy preserving if its dual system node is energy
preserving. A system node that is both energy preserving and co-energy preserving is
called conservative.

We see that a system node
[

A&B
C&D

]
is conservative if and only if the dual system node[

A&B
C&D

]∗ is conservative. Energy preservation is also clearly a necessary condition for
conservativity, and the following important result provides a converse:

Theorem 3.12 For every energy-preserving system node
[

A&B
C&D

]
, the following

hold:

1. The operator
[ [ 1 0 ]

C&D

]
maps dom

([
A&B
C&D

])
into dom

([
A&B
C&D

]∗)
and

[
A&B
C&D

]∗ [[1 0
]

C&D

]
=
[−A&B[

0 1
]
]

on dom
([

A&B
C&D

])
. (3.15)

2. The following conditions are equivalent:
(a) The system node

[
A&B
C&D

]
is conservative.

(b) The operator
[ [ 1 0 ]

C&D

]
maps dom

([
A&B
C&D

])
onto dom

([
A&B
C&D

]∗)
.
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(c) The range of
[

A&B
C&D

] + [
α 0
0 0

]
is dense in

[Hc
Y
]

for some, or equivalently for

all, α ∈ C
+.

This follows by taking R = 1U , P = 1X , and J = 1Y in [33, Thms 3.2 and 4.2].
We now finally arrive at the main part of the article: a study of the continuous-time
analogue of the controllable energy-preserving model in Theorem 1.4.

4 The Controllable Energy-Preserving Functional Model

In this section we present the controllable energy-preserving model realization, which
uses Hc as state space. Later, in Sect. 5, we show how the properties of the observable
co-energy-preserving functional-model system node can be concluded from the results
of this section.

4.1 Definition and Immediate Properties

Let ϕ ∈ S(C+;U ,Y) where U and Y are separable Hilbert spaces. As before, let Hc

denote the Hilbert space whose reproducing kernel is

Kc(μ, λ) = 1 − ϕ(μ)∗ϕ(λ)

μ + λ
(4.1)

and let ec(·) be the point-evaluation mapping on Hc, so that ec(λ)∗u = Kc(·, λ)u for
all λ ∈ C

+ and u ∈ U . Introduce the mapping

[
A&B
C&D

]

c
:
[

ec(λ)∗u
u

]
�→
[

λec(λ)∗u
ϕ(λ)u

]
, u ∈ U , λ ∈ C

+. (4.2)

In the following lemma we show that
[

A&B
C&D

]
c in (4.2) can be extended to a closable

linear operator

[
A&B
C&D

]

c
:
[Hc

U
]

⊃ D0 →
[Hc

Y
]

, where

D0 := span

{[
ec(λ)∗u

u

] ∣∣∣∣λ ∈ C
+, u ∈ U

}
.

(4.3)

Lemma 4.1 The formula (4.2) extends via linearity and limit-closure to define a
scattering-isometric closed linear operator

[
A&B
C&D

]
c.

Proof By (4.1) and the equality Kc(λ2, λ1) = ec(λ2)ec(λ1)
∗, we have for all λk ∈ C

+
and uk ∈ U , k = 1, 2, that

(u1, u2)U − (ϕ(λ1)u1, ϕ(λ2)u2)Y
= (λ2 + λ1)

(
ec(λ1)

∗u1, ec(λ2)
∗u2
)
Hc

= (
λ1ec(λ1)

∗u1, ec(λ2)
∗u2
)
Hc

+ (
ec(λ1)

∗u1, λ2ec(λ2)
∗u2
)
Hc

. (4.4)
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If we for k = 1, 2 set

[
xk

uk

]
:=
[

ec(λk)
∗uk

uk

]
and

[
zk

yk

]
:=
[

A&B
C&D

]

c

[
xk

uk

]
=
[
λkec(λk)

∗uk

ϕ(λk)uk

]
,

then (4.4) can be expressed as

(u1, u2)U − (y1, y2)Y = (z1, x2)Hc
+ (x1, z2)Hc

,
[

zk

yk

]
=
[

A&B
C&D

]

c

[
xk

uk

]
,

(4.5)

for all
[ xk

uk

] =
[

ec(λk )
∗uk

uk

]
, k = 1, 2. If we formally extend the definition (4.2) of

[
A&B
C&D

]
c to all of D0 by taking linear combinations (where at this stage

[
A&B
C&D

]
c may a

priori be ill-defined, so that
[

A&B
C&D

]
c

[
x
u
]

depends on the choice of linear combination
[

x
u
] = ∑N

k=1

[
ec(λk )

∗uk
uk

]
chosen to represent

[
x
u
]
), then the identity (4.5) continues

to hold for all
[ x1

u1

]
,
[ x2

u2

]
in the span D0.

We now show that this implies that
[

A&B
C&D

]
c in (4.3) is well-defined and closable.

Suppose that xn, un, zn , and yn are sequences such that

[
zn

yn

]
=
[

A&B
C&D

]

c

[
xn

un

]
→
[

z
y

]
in

[Hc

Y
]

and

[
xn

un

]
→
[

0
0

]
in

[Hc

Y
]

. (4.6)

To establish that
[

A&B
C&D

]
c is closable, we need to show that

[ z
y
] = [

0
0

]
. The special

case where
[ xn

un

] = [
0
0

]
for all n is exactly what is needed to see that

[
A&B
C&D

]
c is

well-defined; in this way well-definedness and closability are simultaneously handled
in a single argument.

Using (4.5) and the continuity of the inner product, the hypothesis (4.6) implies
that

−‖y‖2
Y = (0, 0)U − (y, y)Y = (z, 0)Hc

+ (0, z)Hc
= 0,

and so y = 0. Applying (4.5) again, we now obtain that for all
[ x2

u2

] ∈ dom
([

A&B
C&D

]
c

)
:

0 = (0, y2)U − (0, u2)Y = (z, x2)Hc
+ (0, z2)Hc

,

[
z2
y2

]
=
([

A&B
C&D

])

c

[
x2
u2

]
,

so that z ⊥ x2 for all
[ x2

y2

] ∈ dom
([

A&B
C&D

]
c

)
. In particular, for every λ ∈ C

+ and

u ∈ U we have that
[ x2

u2

] := [
ec(λ)∗u

u

] ∈ dom
([

A&B
C&D

]
c

)
and

0 = (
z, ec(λ)∗u

)
Hc

= (
z(λ), u

)
U , λ ∈ C

+, u ∈ U ,



748 J. A. Ball et al.

and therefore z(λ) = 0 for all λ ∈ C
+. We conclude that both z and y are zero as

needed to complete the proof. ��
From now on, we let

[
A&B
C&D

]
c denote the closure of the linear operator determined

by (4.3).

Theorem 4.2 The operator
[

A&B
C&D

]
c is an energy-preserving system node with input

space U , state space Hc, and output space Y . Denoting the main and control operators
of
[

A&B
C&D

]
c by Ac and Bc, respectively, we obtain that

(α − Ac|Hc)
−1 Bc = ec(α)∗, α ∈ C

+. (4.7)

In addition,
[

A&B
C&D

]
c is controllable:

span
{
(α − Ac|Hc)

−1 Bcu|u ∈ U , α ∈ C
+} = Hc,

and
[

A&B
C&D

]
c realizes ϕ:

[
Cc&Dc

] [(α − Ac|Hc)
−1 Bc

1

]
= ϕ(α), α ∈ C

+.

Proof We use Lemma 3.8 to prove that
[

A&B
C&D

]
c is a passive system node. Since[

A&B
C&D

]
c is closed it suffices to show that the following subspace of the range of[

[ 1 0 ]−[ Ac&Bc ]
[ 0

√
2 ]

]
is dense in

[
Hc
U
]
:

R := span

{[[
1 0

]− [
Ac&Bc

]
[
0

√
2
]

] [
ec(λ)∗u

u

] ∣∣∣∣ λ ∈ C
+, u ∈ U

}

= span

{[
(1 − λ)ec(λ)∗u√

2u

] ∣∣∣∣ λ ∈ C
+, u ∈ U

}
.

This space is indeed dense, since

[
x2
u2

]
∈
[Hc

U
]

� R ⇐⇒ ∀λ ∈ C
+, u ∈ U :

(
x2, (1 − λ)ec(λ)∗u

)
Hc

+
(

u2,
√

2u
)

U = 0

⇐⇒ ∀λ ∈ C
+ : (λ − 1)x2(λ) = √

2u2.

Choosing λ = 1 yields that u2 = 0 and hence x2(λ) = 0 for all λ ∈ C
+\{1}. Since x2

is holomorphic and thus continuous, also x2(1) = 0 as well, and hence x2 is the zero
function in Ho. We have established that

[
A&B
C&D

]
c is a passive system node, which is

moreover energy preserving due to Definition 3.7 and Lemma 4.1.
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By Lemma 3.9, we have C
+ ⊂ res

(
A|Hc

)
. Then (4.7) follows from (4.3) and

Definition 3.1.3, since for every α ∈ C
+:

[
Ac&Bc

]
[

ec(α)∗u
u

]
= αec(α)∗u = Ac|Hc ec(α)∗u + Bcu

⇐⇒ (α − Ac|Hc)ec(α)∗u = Bcu. (4.8)

In particular,
[

A&B
C&D

]
c is controllable because

span
{
ec(α)∗u|u ∈ U , α ∈ C

+} = Hc

by Remark 1.2. Finally, the transfer function of
[

A&B
C&D

]
c evaluated at α ∈ C

+ is

[
Cc&Dc

] [(α − Ac|Hc)
−1 Bcu

u

]
= [

Cc&Dc
] [ec(α)∗u

u

]
= ϕ(α)u, (4.9)

for all u ∈ U . ��
The domain of the main operator Ac of

[
A&B
C&D

]
c is defined abstractly in (3.2), but we

do not know how to characterize dom (Ac) explicitly. The observation operator Cc is
defined in (3.4), but we have no explicit formula for the action of Cc on generic elements
of dom (Ac) either. These two shortcomings will cause us significant difficulties later.

4.2 Uniqueness up to Unitary Similarity

We now prove that every controllable energy-preserving realization of ϕ is unitarily
similar to

[
A&B
C&D

]
c; this justifies the terminology canonical functional-model system

node for
[

A&B
C&D

]
c.

Theorem 4.3 Let ϕ ∈ S(C+;U ,Y) and let
[

A&B
C&D

]
be a controllable and energy

preserving realization of ϕ with state space X . Then the mapping � : Hc → X
defined by

�ec(λ)∗u := (λ − A|X )−1 Bu, λ ∈ C
+, u ∈ U , (4.10)

extends by linearity and limit-closure to a unitary operator Hc → X . Moreover, �

intertwines
[

A&B
C&D

]
with

[
A&B
C&D

]
c:

dom
([

A&B
C&D

])
=
[
� 0
0 1U

]
dom

([
A&B
C&D

])

c
and

[
A&B
C&D

] [
� 0
0 1U

]
=
[
� 0
0 1Y

] [
A&B
C&D

]

c
,

(4.11)

so that
[

A&B
C&D

]
and

[
A&B
C&D

]
c are unitarily similar.
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Proof The key to the proof is the following consequence of (3.3) and (3.6): for all
λ ∈ res (A) we have that

[
(λ−A|X )−1 Bu

u

] ∈ dom
([

A&B
C&D

])
and

[
A&B
C&D

] [
(λ − A|X )−1 Bu

u

]
=
[
λ(λ − A|X )−1 Bu

ϕ(λ)u

]
. (4.12)

Since
[

A&B
C&D

]
is assumed to be energy preserving, it follows from Lemma 3.9

that C
+ ⊂ res (A) and that (3.14) is satisfied. According to (4.10), we have for all

λ,μ ∈ C
+ and all u, v ∈ U that

(μ + λ)
(
�ec(λ)∗u,�ec(μ)∗v

)
X

= (μ + λ)
(
(λ − A|X )−1 Bu, (μ − A|X )−1 Bv

)

X
=
(
λ(λ − A|X )−1 Bu, (μ − A|X )−1 Bv

)

X
+
(
(λ − A|X )−1 Bu, μ(μ − A|X )−1 Bv

)

X .

This is by (4.12) and (3.14) equal to

(u, v)U − (ϕ(λ)u, ϕ(μ)v)Y = (μ + λ)
(
ec(λ)∗u, ec(μ)∗v

)
Hc

,

where we used (4.4) in the last step. We can conclude that

(
�ec(λ)∗u,�ec(μ)∗v

)
X = (

ec(λ)∗u, ec(μ)∗v
)
Hc

, λ, μ ∈ C
+, u, v ∈ U . (4.13)

Taking linear combinations, we obtain from (4.13) that for all λk ∈ C
+ and uk ∈ U :

∥
∥∥∥∥
�

n∑

k=1

ec(λk)
∗uk

∥
∥∥∥∥

2

X
=
∥
∥∥∥∥

n∑

k=1

ec(λk)
∗uk

∥
∥∥∥∥

2

Hc

. (4.14)

Denote E0 := span
{
ec(λ)∗u|λ ∈ C

+, u ∈ U}, equipped with the norm of Hc.
Then each x ∈ E0 can be written as a sum x = ∑n

k=1 ec(λk)
∗uk , and (4.14) shows

that the value of �
∑n

k=1 ec(λk)
∗uk is independent of the particular linear combination∑n

k=1 ec(λk)
∗uk that is used to represent x . Thus, �, which was originally defined

only for kernel functions e(λ)∗u with λ ∈ C
+ and u ∈ U , has a unique extension to

a linear operator E0 → X , which we still denote by �. Due to (4.14), this operator
is isometric, and by (4.10) the image of E0 under this operator is dense in X , since[

A&B
C&D

]
is assumed to be controllable. As E0 is dense in Hc, we may further extend �

to a unitary operator Hc → X , which we still denote by �.
Now we prove that � intertwines

[
A&B
C&D

]
with

[
A&B
C&D

]
c. It follows from (3.3) that[

� 0
0 1

]
maps D0, defined in (4.3), into dom

([
A&B
C&D

])
. By (4.10), (4.12), and (4.2), the
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following equality holds for all λ ∈ C
+ and u ∈ U :

[
A&B
C&D

] [
�ec(λ)∗u

u

]
=
[

A&B
C&D

] [
(λ − A|X )−1 Bu

u

]

=
[
λ(λ − A|X )−1 Bu

ϕ(λ)u

]

=
[
λ�ec(λ)∗u

ϕ(λ)u

]
=
[
�
[
Ac&Bc

]

Cc&Dc

] [
ec(λ)∗u

u

]
, (4.15)

which shows that
[

A&B
C&D

] [
� 0
0 1U

]
and

[
� 0
0 1Y

] [
A&B
C&D

]
c coincide on D0. Furthermore,

D0 is dense in dom
([

A&B
C&D

]
c

)
, equipped with the graph norm, by Lemma 3.5.

We next show how it follows from the above that

[
�x
u

]
∈ dom

([
A&B
C&D

])
for all

[
x
u

]
∈ dom

([
A&B
C&D

])

c
, and

[
A&B
C&D

] [
�x
u

]
=
[
�
[
Ac&Bc

]

Cc&Dc

] [
x
u

]
,

[
x
u

]
∈ dom

([
A&B
C&D

])

c
. (4.16)

For every
[

x
u
] ∈ dom

([
A&B
C&D

]
c

)
there by the definition of

[
A&B
C&D

]
c exists a sequence

[ xn
un

] ∈ D0, such that
[ xn

un

] → [
x
u
]

in
[

Hc
U
]

and
[

A&B
C&D

]
c

[ xn
un

] → [
A&B
C&D

]
c

[
x
u
]

in
[Hc

Y
]
. By the continuity of � and the fact that

[
A&B
C&D

] [
� 0
0 1U

]
and

[
� 0
0 1Y

] [
A&B
C&D

]
c

coincide on D0, this implies that

[
�
[
Ac&Bc

]

Cc&Dc

] [
xn

un

]
=
[

A&B
C&D

] [
�xn

un

]
→
[
�
[
Ac&Bc

]

Cc&Dc

] [
x
u

]
.

Using the continuity of � again, we obtain that
[

�xn
un

] ∈ dom
([

A&B
C&D

])
converges to[

�x
u

]
in
[X

U
]
, and so by the closedness of

[
A&B
C&D

]
, we have (4.16).

It remains to prove that
[

� 0
0 1

]
maps dom

([
A&B
C&D

]
c

)
onto dom

([
A&B
C&D

])
. As a

consequence of (4.10) and Lemma 3.5,
[

� 0
0 1

]D0 is dense in dom
([

A&B
C&D

])
with the

graph norm. Hence, for every
[

w
u
] ∈ dom

([
A&B
C&D

])
, we can find a sequence

[
wn
un

] ∈[
� 0
0 1

]D0 that converges to
[

w
u
]

in the graph norm of
[

A&B
C&D

]
. Writing xn := �−1wn ,

we obtain from (4.16) and the closedness of
[

A&B
C&D

]
c that

[
�−1wn

un

]
→ [

�−1w
u

]
in

the graph norm of
[

A&B
C&D

]
c. (The details are very similar to the preceding paragraph.)

Thus, for every
[

w
u
] ∈ dom

([
A&B
C&D

])
, we have

[
x
u
] := [

�−1w
u

] ∈ dom
([

A&B
C&D

]
c

)
and[

w
u
] = [

�x
u

]
. ��

We would like to obtain explicit formulas for the main, control, and observation
operators of

[
A&B
C&D

]
c acting on generic elements of Hc, and similarly for the adjoint.

It turns out that this task is much easier for
[

A&B
C&D

]∗
c than for

[
A&B
C&D

]
c, so we start with

the adjoint.
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4.3 Explicit Formulas for the System-Node Operators of the Dual

In reproducing-kernel Hilbert spaces, the existence of an explicit formula for the action
of a given operator on kernel functions usually means that there is an equally explicit
formula for the action of the adjoint on a generic functional element of the reproducing
kernel Hilbert space. This phenomenon continues to hold in the present unbounded
setting, as illustrated in the following proposition. We refer the reader back to Sect. 3.4
for the definition of dual system node.

The reader will observe that many of the formulas in this section have apparent
singularities at some points of the form 0/0. Since the functions are holomorphic
(or conjugate holomorphic), the singularities are in fact removable and the formu-
las continue to hold when one applies holomorphic continuation to evaluate at such
exceptional points.

By the general principles explained in Sect. 3.4, we know that
[

A&B
C&D

]∗
c is a system

node on (Y,X ,U). We now compute this dual system node.

Theorem 4.4 The dual system node of
[

A&B
C&D

]
c is the operator

[
A&B
C&D

]∗

c
:
[Ho

Y
]

⊃ dom
([

A&B
C&D

])∗
c

→
[Ho

U
]

given by

[
A&B
C&D

]∗

c
:
[

x
y

]
�→
[

z
u

]
, where (4.17)

z(μ) := μx(μ) + ϕ̃(μ)y − u, μ ∈ C
+, and (4.18)

u := lim
Re η→∞ ηx(η) + ϕ̃(η)y, with domain (4.19)

dom

([
A&B
C&D

]∗

c

)
:=
{[

x
y

]
∈
[Hc

Y
] ∣∣∣∣∃u ∈ U : z ∈ Hc in (4.18)

}
. (4.20)

For every
[ x

y
] ∈ dom

([
A&B
C&D

]∗
c

)
, the u ∈ U such that z defined in (4.18) lies in Hc is

unique, and it is given by (4.19).

Proof We combine the graph characterization

⎡

⎢⎢
⎣

Hc

U
Hc

Y

⎤

⎥⎥
⎦�

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

−
[

1 0
0 1

]

[
A&B
C&D

]

c

⎤

⎥⎥
⎦ dom

([
A&B
C&D

]

c

)
⎞

⎟⎟
⎠ =

⎡

⎢⎢
⎣

[
A&B
C&D

]∗

c[
1 0
0 1

]

⎤

⎥⎥
⎦ dom

([
A&B
C&D

]∗

c

)

of the adjoint of
[

A&B
C&D

]
c with the construction of

[
A&B
C&D

]
c and thus obtain that

[ x
y
] ∈

dom
([

A&B
C&D

]∗
c

)
and

[
z
u
] = [

A&B
C&D

]∗
c

[ x
y
]

if and only if
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⎡

⎢⎢
⎣

z
u
x
y

⎤

⎥⎥
⎦ ∈

⎡

⎢⎢
⎣

Hc

U
Hc

Y

⎤

⎥⎥
⎦� span

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

−ec(μ)∗v
−v

μec(μ)∗v
ϕ(μ)v

⎤

⎥⎥
⎦ , v ∈ U , μ ∈ C

+

⎫
⎪⎪⎬

⎪⎪⎭

=
⋂

μ∈C+
ker

([−ec(μ) −1 μec(μ) ϕ(μ)∗
])

.

Thus a pair
[ x

y
] ∈

[Hc
Y
]

lies in dom
([

A&B
C&D

]∗
c

)
if and only if there exist z ∈ Hc and

u ∈ U such that −z(μ) − u + μx(μ) + ϕ̃(μ)y = 0 for all μ ∈ C
+, i.e., z is given by

(4.18). When such a u exists, we have

lim
Re η→∞ z(η) = lim

Re η→∞ ηx(η) + ϕ(η)∗y − u = 0

by Proposition 2.6, and hence u is given by (4.19). ��

With the formulas in Theorem 4.4 as a starting point, it is possible to compute the
main operator Ad

c = A∗
c , control operator Bd

c = C∗
c ∈ B(Y,Hd

c,−1), and observation

operator Cd
c = B∗

c ∈ B(Hd
c,1,U), of

[
A&B
C&D

]∗
c explicitly.

Proposition 4.5 The domain dom
(

A∗
c

) = Hd
c,1 of A∗

c = Ad
c is given by

dom
(

A∗
c

) = {x ∈ Hc|∃u ∈ U : μ �→ μx(μ) − u ∈ Hc}. (4.21)

Moreover, when x ∈ dom
(

A∗
c

)
, the associated vector u can be recovered from x using

the formula u = limRe η→∞ ηx(η), and

(A∗
c x)(μ) = μx(μ) − lim

Re η→∞ ηx(η), Cd
c x = B∗

c x = lim
Re η→∞ ηx(η). (4.22)

Proof By Definition 3.11, (3.2), and (3.4), a function x ∈ Hc lies in dom
(

Ad
c

)
if and

only if
[ x

0
] ∈ dom

([
A&B
C&D

]∗
c

)
, and in this case

[
Ad

c x
Cd

c x

]
=
[

A&B
C&D

]∗

c

[
x
0

]
.

Comparing this to Theorem 4.4 with y = 0 gives the result. ��

To get an explicit description of the (−1)-scaled rigged space (also called “extrap-
olation space”) Hd

c,−1 we first need a formula for the resolvent of A∗
c .
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Proposition 4.6 Let Ad
c = A∗

c be the main operator and Bd
c = C∗

c be the control

operator for the dual system node
[

Ad
c &Bd

c

Cd
c &Dd

c

]
= [

A&B
C&D

]∗
c . Then the resolvent of A∗

c is

given by

(
(α − A∗

c)
−1x

)
(μ) = x(μ) − x(α)

α − μ
, α,μ ∈ C

+, x ∈ Hc. (4.23)

Moreover, the following formulas hold:

(
A∗

c(α − A∗
c)

−1x
)

(μ) = μx(μ) − αx(α)

α − μ
, α,μ ∈ C

+, x ∈ Hc, (4.24)

(
(α − A∗

c |Hc)
−1C∗

c y
)

(μ) = ϕ̃(μ) − ϕ̃(α)

α − μ
y, α, μ ∈ C

+, y ∈ Y, (4.25)

B∗
c (α − A∗

c)
−1 = ec(α), α ∈ C

+. (4.26)

Proof For ξ ∈ dom
(

A∗
c

)
, set x = (α − A∗

c)ξ . From the formulas (4.22) we see that

x(μ) = (α − μ)ξ(μ) + B∗
c ξ.

We conclude that B∗
c ξ = x(α) and x(μ) = (α − μ)ξ(μ) + x(α). Solving for ξ gives

ξ(μ) = x(μ)−x(α)
α−μ

and formula (4.23) follows.

From A∗
c(α − A∗

c)
−1 = α(α − A∗

c)
−1 − 1, we get

(
A∗

c(α − A∗
c)

−1x
)

(μ) = αx(μ) − αx(α)

α − μ
− x(μ) = μx(μ) − αx(α)

α − μ

and formula (4.24) follows.
By (3.3), for an arbitrary y ∈ Y we can set x := (

α − A∗
c |Hc

)−1
C∗

c y in order to
get
[ x

y
] ∈ dom

([
A&B
C&D

]∗
c

)
. If we further set

[
z
u
] := [

A&B
C&D

]∗
c

[ x
y
]
, then we obtain from

(3.6) that

z = αx, u = ϕ̃(α)y.

(Here we use the fact that the transfer function of
[

A&B
C&D

]∗
c is ϕ̃ since the transfer

function of
[

A&B
C&D

]
c is ϕ, as observed in Proposition 3.10.) On the other hand, from

Theorem 4.4 we know that z(μ) = μx(μ) + ϕ̃(μ)y − u. Combining these, we have
for all y ∈ Y and α ∈ C

+ that

αx(μ) = μx(μ) + ϕ̃(μ)y − ϕ̃(α)y 
⇒ x(μ) = ϕ̃(μ) − ϕ̃(α)

α − μ
y

and formula (4.25) is established. Formula (4.26) follows directly from (4.7). ��
We recall that the (−1)-scaled rigged space is defined as the completion of the space

Hc in the norm
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‖x‖ =
∥
∥∥(β − A∗

c)
−1x

∥
∥∥Hc

(4.27)

and that (β − A∗
c)

−1 has an extension to a unitary operator from this rigged space onto
Hc. For x ∈ Hc, we now have the formula (4.23) for the action of the resolvent (β −
A∗

c)
−1 on x . This suggests that we identify the (−1)-rigged space concretely as follows:

Hd
c,−1 :=

{

x : C
+ → U

∣∣∣∣μ �→ x(μ) − x(β)

β − μ
∈ Hc

}

, (4.28)

with norm given by

‖x‖Hd
c,−1

:=
∥∥∥∥
∥
μ �→ x(μ) − x(β)

β − μ

∥∥∥∥
∥Hc

, (4.29)

as was also done in [26,27] in a closely related setting.
Once again the norm depends on the choice of β but all norms arising in this

way are equivalent. Note that constant functions x(μ) = u are in Hd
c,−1 with norm

zero; therefore we view the space as consisting of equivalence classes, where two
representatives x and ξ of the same equivalence class differ by a constant: x(μ) −
ξ(μ) = v for all μ ∈ C

+ for some v ∈ U . We denote the equivalence class of x in
Hd

c,−1 by [x]; and if [x] = [ξ ] then we write x ∼= ξ . Next some properties of this

space Hd
c,−1 are summarized:

Theorem 4.7 The space Hd
c,−1 defined in (4.28) and (4.29) is complete.

1. The map ι : x �→ [x] embeds Hc into Hd
c,−1 as a dense subspace. A given element

[x] ∈ Hd
c,−1 is of the form ι(z) for some z ∈ Hc if and only if the function

μ �→ x(μ) − x(α)

α − μ
, μ ∈ C

+, is not only in Hc but in fact is in dom
(

A∗
c

) =
Hd

c,1 ⊂ Hc for some, or equivalently for all, α ∈ C
+. When this is the case, the

equivalence class representative z for [x] that lies in Hc, is uniquely determined
by the decay condition at infinity:

lim
Re η→∞ z(η) = 0. (4.30)

2. Define an operator A∗
c |Hc : Hc → Hd

c,−1 by

A∗
c |Hc x := [μ �→ μx(μ)], x ∈ Hc, μ ∈ C

+. (4.31)

When Hc is identified as a linear sub-manifold of Hd
c,−1, then A∗

c |Hc is the contin-

uous extension of A∗
c : dom

(
A∗

c

) → Hc to an operator Hc → Hd
c,−1. Its resolvent

is given by

(
(α − A∗

c |Hc)
−1[x]

)
(μ) = x(μ) − x(α)

α − μ
, α,μ ∈ C

+, [x] ∈ Hd
c,−1, (4.32)

and for α = β this is a unitary map from Hd
c,−1 to Hc.
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3. With Hd
c,−1 identified concretely as in (4.28), the action of C∗

c : Y → Hd
c,−1 is

given by

C∗
c y = [μ �→ ϕ̃(μ)y], y ∈ Y, μ ∈ C

+. (4.33)

Proof We first check that Hd
c,−1 defined as in (4.28) and (4.29) is complete. Sup-

pose that [xn] is a Cauchy sequence in Hd
c,−1. Then the sequence zn := μ �→

xn(μ)−xn(β)

β−μ
, μ ∈ C

+, is Cauchy in Hc and it converges to some z in Hc. We solve

the equation x(μ)−x(β)

β−μ
= z(μ) to come up with

x(μ) − x(β)

β − μ
= z(μ) ⇐⇒ x(μ) = x(β) + (β − μ)z(μ)

⇐⇒ x ∼= μ �→ (β − μ)z(μ), μ ∈ C
+; (4.34)

note that the solution is determined only up to an additive constant. By (4.34), [μ �→
(β − μ)z(μ)] ∈ Hd

c,−1 since z ∈ Hc, and [xn] → [x] in Hd
c,−1 by (4.29) and the fact

that zn → z in Hc.

1. If z ∈ Hc then by (4.28), μ → z(μ) + v ∈ Hd
c,−1 for all v ∈ U , since

μ �→ z(μ) + v − z(β) − v

β − μ
= (β − A∗

c)
−1z ∈ dom

(
A∗

c

)
, μ ∈ C

+, (4.35)

see (4.23), and hence ι(Hc) ⊂ Hd
c,−1. From (4.35) it also follows that if [x] = ι(z)

for some z ∈ H then μ �→ x(μ)−x(α)
α−μ

∈ dom
(

A∗
c

)
for all α ∈ C

+. Conversely, if

w := μ �→ x(μ)−x(α)
α−μ

∈ dom
(

A∗
c

)
for some α ∈ C

+, then by (4.22):

(
(α − A∗

c)w
)
(μ) − x(μ) = (α − μ)w(μ) + lim

Re η→∞ ηw(η) − x(μ)

= −x(α) + lim
Re η→∞ ηw(η),

which is constant, so that [x] = ι
(
(α − A∗

c)w
)
.

It is a consequence of the estimate (2.7) that functions in Hc satisfy the decay
condition (4.30). As two representatives of the same equivalence class differ by a
constant, it is clear that there can be at most one representative of a given equivalence
class which satisfies (4.30). Thus the decay condition (4.30) picks out the unique
representative which is in Hc (assuming that the equivalence class is in the image
of ι). Apart from the claim that ι(Hc) is dense in Hd

c,−1, Assertion 1 is proved.

2. We next suppose that x ∈ Hc and we wish to verify that [μx(μ)] is in Hd
c,−1.

Thus we must check that the function z : μ �→ μx(μ)−βx(β)

β−μ
is in Hc. But we

have already verified that this expression is just the formula for A∗
c(β − A∗

c)
−1x ,

see formula (4.24), and hence z is in Hc as wanted. Thus A∗
c |Hc maps Hc into
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Hc,−1 and it follows from (4.22) that A∗
c |Hc is an extension of A∗

c interpreted as
a densely defined operator from Hc into Hc,−1. It is straightforward to verify that
the formula (4.23) for the resolvent of A∗

c extends to (4.32); use (4.31) and read
(4.34) backwards. Combining (4.32) with (4.29), we obtain that (β − A∗

c |Hc )
−1 is

isometric from all of Hd
c,−1 into Hc. On the other hand, (β − A∗

c |Hc)
−1 is onto Hc

by (4.34): for every z ∈ Hc, [μ �→ (β − μ)z(μ)] ∈ Hc,−1 is mapped into z by
(β − A∗

c |Hc)
−1.

By construction, once we fix our choice of β ∈ C
+ to define the norm on the

(−1)-rigged space, the operator (β − A∗
c |Hc)

−1 is unitary from this rigged space
onto Hc. This makes precise the identification of the completion of Hc in the norm
(4.27) with the concrete version of Hd

c,−1 given by (4.28)–(4.29). Moreover, A∗
c |Hc

maps Hc continuously into Hd
c,−1, since for all x ∈ Hc:

‖A∗
c |Hc x‖Hd

c,−1
= ‖(β − A∗

c |Hc)
−1 A∗

c |Hc x‖Hc = ‖β(β − A∗
c)

−1x − x‖Hc

≤
∣∣
∣|β| ‖(β − A∗

c)
−1‖ + 1

∣∣
∣ ‖x‖Hc .

Because Hd
c,−1 is a completion of ι(Hc), it is clear that ι(Hc) is dense in Hd

c,−1.
Now Assertions 1 and 2 are proved completely.

3. By Definition 3.1.3, C∗
c y = [

A∗
c&C∗

c

] [ x
y
] − A∗

c |Hc x , where x is any choice of
function in Hc for which

[ x
y
]

is in dom
([

A&B
C&D

]∗
c

)
; here we use the fact that such

an x exists for every y ∈ Y by (3.3). Using (4.18) together with (4.31), we see that

C∗
c y = [μ �→ μx(μ) + ϕ̃(μ)y − u − μx(μ)] = [μ �→ ϕ̃(μ)y], μ ∈ C

+,

and (4.33) follows. ��
We point out that μ �→ (β − μ)z(μ) in (4.34) is the unique representative of

(β − A∗
c |Hc)z with value zero at β; this will be useful in Sect. 4.7 below. Furthermore,

it follows from (4.22) that for all x ∈ dom
(

A∗
c

)
:

(
(α − A∗

c)x
)
(μ) = (α − μ)x(μ) + lim

Re η→∞ ηx(η),

so that for arbitrary α ∈ C
+:

lim
Re η→∞ ηx(η) = (

(α − A∗
c)x
)
(α), x ∈ dom

(
A∗

c

)
.

We next give another interpretation of this limit.

Remark 4.8 Assume that f and its distribution derivative f ′ both lie in L2(R+;Y).
Then their Laplace transforms f̂ and f̂ ′ both lie in H2(C+;Y), and upon combining
the general Laplace-transform formula f̂ ′(μ) = μ f̂ (μ) − f (0) with (2.6), it follows
that

lim
Re μ→∞ μ f̂ (μ) = f (0). (4.36)
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Hence, the limit limRe η→∞ ηx(η) equals x̌(0), where x̌ is the inverse Laplace trans-
form of x . Comparing this to (4.22), we see that Ad

c is the frequency-domain analogue
of spatial derivative, the generator of an incoming left shift.

In fact,
[

A&B
C&D

]∗
c is a frequency-domain analogue of the standard output-normalized

shift realization of ϕ̃, but with Hc as state space rather than an isometrically contained
subspace of H2(C+;U); see e.g. [45, Def. 9.5.1]. The reason for choosing the state
space Hc is that it makes

[
A&B
C&D

]
c energy preserving, provided that we choose the

appropriate norm in Hc. The realization
[

A&B
C&D

]
c is in general not energy preserving

if we use the norm of H2(C+;U) on the state space; see [9] for more details on this.
These statements are included only in order to provide the reader with some intuition;
we make no use of them here and we give no proofs.

As a corollary of (4.33) and (4.28), we see that

μ �→ ϕ̃(μ) − ϕ̃(α)

α − μ
y ∈ Hc for all α ∈ C

+ and y ∈ Y . (4.37)

In fact the formula (4.25) identifying this expression with (α− A∗
c |Hc)

−1C∗
c y can now

be seen as a consequence of the formula (4.33) combined with (4.32).
Finally, note that

[
A&B
C&D

]∗
c can be recovered from A∗

c , C∗
c , B∗

c , and ϕ̃ evaluated at
one arbitrary point in C

+, as described in Remark 3.3.

4.4 More Explicit Formulas for the Controllable Model

In this subsection we obtain more explicit formulas (to the extent possible) for the
action of the operators Ac, Bc, and Cc in

[
A&B
C&D

]
c.

Let us say that an expression of the form (α − Ac)
−1ec(λ)∗u, where α, λ ∈ C

+ and
u ∈ U , is a regularized kernel function. While a kernel function ec(λ)∗u itself may not
be in dom(Ac), a regularized kernel function is always in dom(Ac). More precisely,
by the first assertion in the following proposition

F0 := span

{
ec(λ)∗u − ec(α)∗u

α − λ

∣∣∣∣λ ∈ C
+, u ∈ U

}

= (α − Ac)
−1span

{
ec(λ)∗u|λ ∈ C

+, u ∈ U} , (4.38)

and by Lemma 3.5 and (4.7) this linear span is a dense subspace of dom (Ac) in the
graph norm for all fixed α ∈ C

+. In particular, the difference of two kernel functions
with the same u ∈ U is in dom (Ac). (The linear span F0 can also be viewed as a
dense subspace of Hc.)

The first result gives more explicit formulas for the actions of Ac and Cc on regu-
larized kernel functions:
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Proposition 4.9 The following statements hold for the system node
[

A&B
C&D

]
c in The-

orem4.2:

1. The action of the resolvent of Ac on kernel functions is given by

(α − Ac)
−1(ec(λ)∗u

) = ec(λ)∗ − ec(α)∗

α − λ
u, α, λ ∈ C

+, u ∈ U . (4.39)

The formula (4.39) uniquely determines the action of (α − Ac)
−1 on the whole

space Hc by linearity and continuity.
2. The main operator Ac and observation operator Cc of

[
A&B
C&D

]
c have the following

actions on regularized kernel functions:

Ac
(
(α − Ac)

−1ec(λ)∗u
) = λec(λ)∗ − αec(α)∗

α − λ
u, and (4.40)

Cc
(
(α − Ac)

−1ec(λ)∗u
) = ϕ(λ) − ϕ(α)

α − λ
u, α, λ ∈ C

+, u ∈ U . (4.41)

Moreover these formulas uniquely determine Ac and Cc on the whole space Hc,1 =
dom (Ac).

Proof 1. We first prove that the resolvent of Ac satisfies (4.39). For arbitrary α, λ ∈
C

+ and u ∈ U we by the definition (4.3) of
[

A&B
C&D

]
c have that

[
ec(λ)∗u

u

]
,
[

ec(α)∗u
u

] ∈
dom

([
A&B
C&D

]
c

)
and that

[
ec(λ)∗u

u

]
−
[

ec(α)∗u
u

]
=
[

ec(λ)∗u − ec(α)∗u
0

]
∈ dom

([
A&B
C&D

])

c
,

[
Ac

Cc

] (
ec(λ)∗ − ec(α)∗

)
u =

[
A&B
C&D

]

c

([
ec(λ)∗u

u

]
−
[

ec(α)∗u
u

])

=
[
λec(λ)∗ − αec(α)∗

ϕ(λ) − ϕ(α)

]
u, (4.42)

so that in particular ec(λ)∗u − ec(α)∗u ∈ dom (Ac) and

Ac
(
ec(λ)∗u − ec(α)∗u

) = λec(λ)∗u − αec(α)∗u.

Now clearly

(α − Ac)
(
ec(λ)∗u − ec(α)∗u

)

= αec(λ)∗u − αec(α)∗u − λec(λ)∗u + αec(α)∗u

= (α − λ)ec(λ)∗u,

which shows that the resolvent satisfies (4.39). As the span of kernel functions is
dense in Hc and (α − Ac)

−1 is a bounded linear operator on Ho, we see that (4.39)
uniquely determines (α − Ac)

−1 on the whole space Hc.



760 J. A. Ball et al.

2. It follows from (4.42) and (4.39) that Ac and Cc satisfy (4.40) and (4.41), and
therefore the maps Ac and Cc are determined by these formulas on the dense sub-
space F0 of their domain dom (Ac). Since Ac and Cc are bounded from dom (Ac)

to Hc and Y , respectively, the claim follows. ��
Proposition 4.9 is of a preliminary nature, and now we proceed to search for the

actions of operators on generic elements of their domains. The following important
result is a consequence of Theorem 3.12.

Theorem 4.10 The following claims are true:

1. For arbitrary
[

x
u
] ∈ dom

([
A&B
C&D

]
c

)
, we can set y := [

Cc&Dc
] [

x
u
]

and obtain

[
Ac&Bc

]
[

x
u

]
= μ �→ −μx(μ) − ϕ̃(μ)y + u, μ ∈ C

+. (4.43)

Here u can be recovered from
[ x

y
]

using (4.19). Moreover,

(Acx)(μ) = −μx(μ) − ϕ̃(μ)Ccx, x ∈ dom (Ac) , μ ∈ C
+. (4.44)

2. We have

dom
([

A&B
C&D

]

c

)
⊂
{[

x
u

]
∈
[Hc

U
] ∣∣
∣∣

∃y ∈ Y : μ �→ −μx(μ) − ϕ̃(μ)y + u ∈ Hc

}
, (4.45)

and in particular

dom (Ac) ⊂
{

x ∈ Hc

∣∣∣∣∃y ∈ Y : μ �→ μx(μ) + ϕ̃(μ)y ∈ Hc

}
. (4.46)

Proof The Eq. (4.43) follows from the energy-preserving property of
[

A&B
C&D

]
c, The-

orem 3.12.1, and Theorem 4.4. Taking u = 0 and using the Definitions (3.2) and (3.4)
of Ac and Cc, we obtain (4.44). By Definition 3.1,

[
Ac&Bc

]
maps dom

([
A&B
C&D

]
c

)
into

Hc, and combining this with (4.43), we get (4.45). Taking u = 0 in (4.45) together
with (3.2), we arrive at (4.46). ��
Corollary 4.11 For every u ∈ U , there exist x ∈ Hc and y ∈ Y , such that

μ �→ −μx(μ) − ϕ̃(μ)y + u ∈ Hc. (4.47)

Also, for every y ∈ Y , there exist x ∈ Hc and u ∈ U , such that (4.47) holds. The set
of x ∈ Hc, for which there exists a u ∈ U , such that μ �→ −μx(μ)+ u ∈ Hc is dense
in Hc.

Moreover, (4.47) holds if and only if
[ x

y
] ∈ dom

([
A&B
C&D

]∗
c

)
and u = [

B∗
c &D∗

c

] [ x
y
]
.
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Proof By (4.2), for all u ∈ U , we have
[

ec(λ)∗u
u

] ∈ dom
([

A&B
C&D

]
c

)
for every λ ∈ C

+,
and by Theorem 4.10.2, this pair

[
x
u
]

satisfies (4.47) with y := [
Cc&Dc

] [
x
u
] =

ϕ(λ)u. The condition (4.47) is equivalent to
[ x

y
] ∈ dom

([
A&B
C&D

]∗
c

)
and u =[

B∗
c &D∗

c

] [ x
y
]

by Theorem 4.4. Now the proof is completed by combining (3.3) with
the fact that

[
A&B
C&D

]∗
c is a system node with input space Y . (Recall that dom (A∗) is

dense in X for a system node with main operator A∗ and state space X .) ��
The inclusion (4.45) is in general not an equality and hence (4.47) does not imply[

x
u
] ∈ dom

([
A&B
C&D

]
c

)
; this brings us some difficulties later. If we know Ac, includ-

ing its domain, then it will soon turn out that we can calculate Ccx for generic
x ∈ dom (Ac). Then the following continuous-time version of Theorem 1.4 gives
a description of

[
A&B
C&D

]
c, including its domain:

Theorem 4.12 A pair
[

x
u
] ∈

[
Hc
U
]

lies in dom
([

A&B
C&D

]
c

)
if and only if for some, or

equivalently for all, λ ∈ C
+, the function x − ec(λ)∗u lies in dom (Ac). When this is

the case, for an arbitrary fixed λ ∈ C
+, the action of

[
A&B
C&D

]
c is

[
A&B
C&D

]

c

[
x
u

]
=
[
μ �→ −μx(μ) − ϕ(μ)∗γλ + (

1 − ϕ(μ)∗ϕ(λ)
)
u

γλ + ϕ(λ)u

]
,

γλ = Cc
(
x − ec(λ)∗u

)
.

(4.48)

Proof By (3.3) we have that x − (λ − Ac|Hc)
−1 Bcu ∈ dom (Ac) if and only if[

x
u
] ∈ dom

([
A&B
C&D

]
c

)
for arbitrary λ ∈ C

+, and this should be combined with (4.7)
to verify the claim on the domains. It follows from (3.8) and (4.7) that

[
Cc&Dc

] [
x
u
] =

γλ + ϕ(λ)u, and together with Theorem 4.10.1, this implies (4.48). ��
In the sequel, the following bounded operator from Hc into Y plays such an impor-

tant role that we give it a special notation:

Definition 4.13 We denote

τc,α := Cc(α − Ac)
−1, α ∈ C

+. (4.49)

From (4.25) it then follows that for all y ∈ Y:

(τc,α)∗y = (α − A∗
c |Hc)

−1C∗
c y = μ �→ ϕ̃(μ) − ϕ̃(α)

α − μ
, μ ∈ C

+. (4.50)

Hence, if x happens to lie in dom (A), then taking u = 0 in (4.48) yields (note the
absence of λ from the right-hand side)

γλ = Ccx = τc,α(α − Ac)x

for α ∈ C
+, and moreover, γλ is the unique element in Y , such that

〈γλ, y〉Y =
〈
(α − Ac)x, μ �→ ϕ̃(μ) − ϕ̃(α)

α − μ
y

〉

Hc

for all y ∈ Y .
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This should be compared to the definition of g̃(0) in (1.11).
In fact, the arbitrary parameter λ in Theorem 4.12 is only used for calculating y =[

Cc&Dc
] [

x
u
]
, which is obviously independent of λ, and the formula for

[
Ac&Bc

] [
x
u
]

in (4.48) only depends on y, not on λ; compare (4.48) to (4.43). In Theorem 1.4 there
is no need for any arbitrary parameter w, because there

[
x
0

] ∈ dom
([ Ac Bc

Cc Dc

])
for all

x ∈ Hc, since
[ Ac Bc

Cc Dc

]
is bounded.

Remark 4.14 The use of τc,α thus allows us to calculate Cc on generic elements of
dom (Ac) using Cc = τc,α(α − Ac) and (4.50), assuming that we have an explicit
formula for Ac, but note that the formula (4.44) gives the action of Ac in terms of Cc.
This circle definition can be corrected if the condition Hc∩{ϕ̃(·)y|y ∈ Y} = {0} holds.
Indeed, under this assumption, the function ϕ̃(·)y, such that μ �→ μx(μ) + ϕ̃(μ)y ∈
Hc, is uniquely determined by x . (Such a y exists for every x ∈ dom (Ac) by (4.46).)
Note that y will in general not be uniquely determined, only the function ϕ̃(·)y; see
Lemma 4.16 and Theorem 4.17 below for more details on this.

With the help of τc,α , we have an explicit formula for the resolvent operator (α −
Ac)

−1, α ∈ C
+, on generic elements of Hc:

Corollary 4.15 The resolvent operator (α − Ac)
−1 acting on arbitrary functions in

Hc is given explicitly by

(
(α − Ac)

−1x
)

(μ) = x(μ) − ϕ̃(μ)τc,αx

α + μ
, x ∈ Hc, α, μ ∈ C

+. (4.51)

Proof Setting z := (α − Ac)
−1x in (4.51) and using (4.49), we obtain the equivalent

condition

(α + μ)z(μ) = (
(α − Ac)z

)
(μ) − ϕ̃(μ)Ccz, z ∈ dom (Ac), μ ∈ C

+,

which is true by (4.44). ��

Using (4.51) involves calculating τc,αx for generic x ∈ Hc, but we have no explicit
formula for this except for in the case when x is a kernel function; see (4.41). One
way to calculate τc,αx is to use (4.50) and calculate

(
τc,αx, γ

)
Y =

(
x, μ �→ ϕ̃(μ) − ϕ̃(α)

α − μ
γ

)

Hc

, γ ∈ Y .

From the domain of a system node
[

A&B
C&D

]
, the domain of Ac is constructed using

(3.2). Conversely, if we know dom (Ac), then we can recover dom
([

A&B
C&D

])
using

(3.3) as in the proof of Theorem 4.12. In particular, the following result shows that we
have equality in (4.45) if and only if we have equality in (4.46).
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Lemma 4.16 The following claims are true:

1. The condition

dom
([

A&B
C&D

]

c

)
=
{[

x
u

]
∈
[Hc

U
] ∣∣∣
∣∃y ∈ Y :

μ �→ −μx(μ) − ϕ̃(μ)y + u ∈ Hc

}
, (4.52)

holds if and only if

dom (Ac) = {x ∈ Hc|∃y ∈ Y : μ �→ μx(μ) + ϕ̃(μ)y ∈ Hc}. (4.53)

2. It holds that

Hc ∩ {ϕ̃(·)y|y ∈ Y} = {0} (4.54)

if and only if for some (or equivalently for all) α ∈ C
+:

dom (Ac) ∩
{
μ �→ ϕ̃(μ)y

α + μ

∣∣∣∣y ∈ Y
}

= {0}. (4.55)

3. The conditions (4.52)–(4.55) hold if and only if for some (or equivalently for all)
α ∈ C

+:

Hc ∩
{
μ �→ ϕ̃(μ)y

α + μ

∣∣
∣∣y ∈ Y

}
= {0}. (4.56)

Proof 1. By Theorem 4.10, the domains are included in the sets on the right-hand
sides of (4.52) and (4.53), so we only need to show that the converse inclusions
are equivalent. First assume (4.52) and let x ∈ Hc and y ∈ Y be such that

μ �→ μx(μ) + ϕ̃(μ)y ∈ Hc. (4.57)

The working assumption (4.52) then implies that
[ x

0
] ∈ dom

([
A&B
C&D

]
c

)
, and

according to (3.2), this precisely means that x ∈ dom (Ac).
Now assume (4.53) and (4.47). Since αKc(·, α)u ∈ Hc, we also have

− μx(μ) − ϕ̃(μ)y + u − αKc(μ, α)u

= −μx(μ) + μ
1 − ϕ̃(μ)ϕ(α)

μ + α
u − ϕ̃(μ)

(
y − ϕ(α)u

)

in Hc as a function of μ ∈ C
+. Hence,

∃γ ∈ Y : μ �→ −μx(μ) + μ
1 − ϕ̃(μ)ϕ(α)

μ + α
u − ϕ̃(μ)γ ∈ Hc, (4.58)
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since one can simply take γ := y − ϕ(α)u. The statement (4.58) is by (4.53)
equivalent to x − ec(α)∗u ∈ dom (Ac), and according to the first assertion in
Theorem 4.12, this is equivalent to

[
x
u
] ∈ dom

([
A&B
C&D

]
c

)
.

2. First assume (4.54) and suppose that z := μ �→ ϕ̃(μ)y
α+μ

∈ dom (Ac) for some choice

of y ∈ Y and α ∈ C
+. Use (4.44) and (4.49) to calculate

(α − Ac)z = μ �→ (α + μ)z(μ) + ϕ̃(μ)Ccz

= μ �→ ϕ̃(μ)y + ϕ̃(μ)Ccz ∈ Hc ∩ ϕ̃(·)Y .

By (4.54) this quantity is 0, and since α − Ac is injective, we have z = 0, and it
follows that (4.55) holds for all α ∈ C

+.
Conversely, assume that (4.55) holds for some α ∈ C

+ and suppose that x := ϕ̃(·)y
is in Hc for some y ∈ Y . Use (4.51) to calculate

(α − Ac)
−1x = μ �→ x(μ) − ϕ̃(μ)τc,α x

α + μ

= μ �→ ϕ̃(μ)

α + μ

(
y − τc,α x

) ∈ dom (Ac) ∩ ϕ̃(·)
α + ·Y .

By (4.55) this quantity is 0, and hence also x = 0, which proves (4.54).
3. First assume that (4.56) is satisfied. Then trivially (4.55) holds, since dom (Ac) ⊂

Hc, and we next prove that (4.53) is satisfied too. Suppose that x ∈ Hc and y ∈ Y
are such that (4.57) holds. Then for every α ∈ C

+ it also holds that

z := μ �→ (α + μ)x(μ) + ϕ̃(μ)y ∈ Hc and thus

x = μ �→ z(μ) − ϕ̃(μ)y

α + μ
∈ Hc.

On the other hand we have

(α − Ac)
−1z = μ �→ z(μ) − ϕ̃(μ)τc,αz

α + μ
∈ dom (Ac) ⊂ Hc,

and these two together imply that μ �→ ϕ̃(μ)(y−τc,αz)
α+μ

∈ Hc. The working assump-

tion (4.56) then gives that ϕ̃(μ)(y−τc,αz)
α+μ

= 0 for all μ ∈ C
+, i.e., ϕ̃(·)y = ϕ̃(·)τc,αz,

and this implies that x = (α − Ac)
−1z ∈ dom (Ac).

Finally, with the objective of showing (4.56), we assume that α ∈ C
+ is such that

(4.53) and (4.55) hold. Then we pick an x := μ �→ ϕ̃(μ)η

α+μ
∈ Hc, so that also

αx ∈ Hc, and thus by (4.53):

x ∈ dom (Ac) ⇐⇒ ∃γ ∈ Y : μ �→ μ
ϕ̃(μ)η

α + μ
+ ϕ̃(μ)γ ∈ Hc

⇐⇒ ∃γ ∈ Y : μ �→ μ
ϕ̃(μ)η

α + μ
+ α

ϕ̃(μ)η

α + μ
+ ϕ̃(μ)γ ∈ Hc.
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This is seen to be true by simply choosing γ := −η. Thus every x ∈ Hc of
the form x(μ) = ϕ̃(μ)y

α+μ
also lies in dom (Ac), and (4.55) finally gives the desired

result. ��

4.5 Conservativity and the Extrapolation Space

Theorem 1.5 includes a characterization of the case where controllable isometric
realization is in fact unitary. The corresponding situation in the present paper is
that

[
A&B
C&D

]
c is not only energy preserving, but even conservative, so that also

[
A&B
C&D

]∗
c is also energy preserving. We have the following characterizations of this

case:

Theorem 4.17 The following conditions are equivalent:

1. The system node
[

A&B
C&D

]
c is conservative.

2. The condition (4.52) holds together with the following implication:

ϕ̃(·)y ∈ Hc 
⇒ y = 0. (4.59)

3. The condition (4.56) holds for some (or equivalently for all) α ∈ C
+ and

ϕ̃(μ)y = 0 for all μ ∈ C
+ 
⇒ y = 0. (4.60)

4. The function 1− ϕ̃(·)∗ϕ̃(·) has maximal factorable minorant in the right half-plane
sense equal to 0, i.e., if a : C

+ → B(Y,Y ′) is holomorphic with a(μ)∗a(μ) ≤
1 − ϕ̃(μ)∗ϕ̃(μ) for almost all μ on the imaginary line iR, then a = 0.

Proof This proof is heavily based on Theorem 3.12. We first prove that 3. implies 2.:
Assume (4.56) and (4.60). Then (4.52) and (4.54) hold by Lemma 4.16.3. Hence, if
ϕ̃(·)y ∈ Hc, then ϕ̃(μ)y = 0, for all μ ∈ C

+, which by (4.60) implies y = 0.
We next show that 2. implies 1. Assume that (4.52) and (4.59) hold. By

Theorem 3.12.2, we need to show that
[

[ 1 0 ]
[ Cc&Dc ]

]
maps dom

([
A&B
C&D

]
c

)
onto

dom
([

A&B
C&D

]∗
c

)
. Hence fix

[ x
y
] ∈ dom

([
A&B
C&D

]∗
c

)
arbitrarily and let u be the unique

element in U for which (4.47) holds; see (4.20). Then
[

x
u
] ∈ dom

([
A&B
C&D

]
c

)
by (4.52)

and we may define η := [
Cc&Dc

] [
x
u
]
. It follows from Theorem 4.10.1 that (4.47)

holds also with y replaced by η, and hence ϕ̃(·)(y − η) ∈ Hc. Now the implication
(4.59) gives that y = η = [

Cc&Dc
] [

x
u
]
.

Next we establish that 1. implies 3.: By Theorem 3.12.2, conservativity of
[

A&B
C&D

]
c

implies that R := im
([

A&B
C&D

]
c + [

α 0
0 0

])
is dense in

[Hc
Y
]

for some, or equivalently

for all, α ∈ C
+. From the construction of

[
A&B
C&D

]
c it follows that

G := span

{[
(α + μ)ec(μ)∗u

ϕ(μ)u

] ∣∣∣∣μ ∈ C
+, u ∈ U

}

is dense in R, because by the construction of
[

A&B
C&D

]
c, the graph of

[
A&B
C&D

]
c + [

α 0
0 0

]

is the closure of
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span

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

(α + μ)ec(μ)∗u
ϕ(μ)u

ec(μ)∗u
u

⎤

⎥⎥
⎦

∣∣∣∣μ ∈ C
+, u ∈ U

⎫
⎪⎪⎬

⎪⎪⎭
in

⎡

⎢⎢
⎣

Hc

Y
Hc

U

⎤

⎥⎥
⎦ .

Therefore G is also dense in
[Hc

Y
]
.

Now note that we have

[
z
y

]
∈
[Hc

Y
]

� G

⇐⇒
([

(α + μ)ec(μ)∗u
ϕ(μ)u

]
,

[
z
y

])

[Hc
Y
] = 0 for all μ ∈ C

+, u ∈ U

⇐⇒ z ∈ Hc and z(μ) = − ϕ̃(μ)y

α + μ
, μ ∈ C

+.

Thus, if μ �→ ϕ̃(μ)y
α+μ

∈ Hc then we can denote this function by −z and get that
[ z

y
] ∈

[Hc
Y
]

� G, which then by the above implies that z = 0 and y = 0.

The equivalence of assertions one and four is reduced to the corresponding discrete
result in Theorem 1.5 using the Cayley transform described in Sect. 6. ��
Remark 4.18 We can make the following interesting observations:

1. The condition (4.59) implies (4.54). Together with (4.60), (4.54) also implies (4.59).
Note that (4.60) can also be written ∩μ∈C+ker (ϕ̃(μ)) = {0}. Implication (4.59)
holds, e.g., if ϕ̃ is bounded away from zero on iR. Indeed, in this case ϕ̃(·)y is
not even in L2(iR,U) for any nonzero y ∈ Y , and a fortiori, ϕ̃(·)y �∈ Hc. In the
example in Sect. 4.6 below, the implication (4.59) can be false but (4.54) is true.

2. Note that (4.56) is true if ϕ̃ is inner: In this case Hc = H2(C+;U)�Mϕ̃ H2(C+;Y)

isometrically by Corollary 2.5, and the function μ �→ ϕ̃(μ)y
α+μ

, μ ∈ C
+, is Mϕ̃

applied to the kernel function e(α)∗y in H2(C+;Y), cf. Lemma 2.1.2. Hence, for
every co-inner ϕ, the model

[
A&B
C&D

]
c is conservative.

3. On the other extreme of the situation in 2., if ‖ϕ‖H∞ = δ < 1, then Hc is simply a
re-normed version of H2(C+;U) by (2.4), since

√
1 − δ2 ≤ (1 − Mϕ̃ M ∗̃

ϕ)1/2 ≤ 1
and Qx = x , because 1 − Mϕ̃ M ∗̃

ϕ is injective. Then the intersection in (4.56) is

all of
{
μ �→ ϕ̃(μ)y

α+μ

∣∣y ∈ Y, μ ∈ C
+} and Hc is not conservative unless ϕ(μ) = 0

for all μ ∈ C
+. If ϕ is identically zero, then condition (4.60) is violated and hence[

A&B
C&D

]
c is not conservative in this case either. Thus,

[
A&B
C&D

]
c can be conservative

only if ‖ϕ‖H∞(C+;U ,Y) = 1.

In the rest of this subsection, we assume that (4.56) holds, which is true e.g. if[
A&B
C&D

]
c is conservative. In this case we can proceed to identify Hc,−1 concretely

and calculate Ac|Hc and Bc explicitly. In addition to (4.56), we make vital use of the
characterization (4.53) of dom (Ac).
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Since dom (Ac) is given by (4.53) and Hc,−1 = (β − Ac|Hc)Hc, the formula
(4.51) for the resolvent of Ac suggests the following concrete identification of the
extrapolation space:

Hc,−1 =
{

x : C
+ → Y

∣∣
∣∣∃y ∈ Y : μ �→ x(μ) + ϕ̃(μ)y

β + μ
∈ Hc

}
. (4.61)

The property (4.54) guarantees us that the function ϕ̃(·)y in (4.61) is uniquely deter-
mined by x (whenever at least one such function exists). Note that the choice of y is
is in general not unique. Now we set

‖x‖Hc,−1 =
∥∥∥∥μ �→ x(μ) + ϕ̃(μ)y

β + μ

∥∥∥∥Hc

, x ∈ Hc,−1. (4.62)

We have ϕ̃(·)γ ∈ Hc,−1 with zero norm for all γ ∈ Y; simply choose y := −γ

in (4.61) and (4.62). Conversely, if ‖x‖Hc,−1 = 0, then μ �→ x(μ)+ϕ̃(μ)y
β+μ

= 0 for

all μ ∈ C
+, i.e., x(μ) = −ϕ̃(μ)y for all μ ∈ C

+. Hence, the elements of Hc,−1
are equivalence classes of functions modulo the subspace ϕ̃(·)Y . These equivalence
classes are denoted as [x], where x is any particular representative of the equivalence
class. We summarize the properties of the space Hc,−1 as follows:

Theorem 4.19 Assume that (4.56) holds. Then the space Hc,−1 given by (4.61) and
(4.62) is complete and the following claims are true:

1. The map ι : x �→ [x] embeds Hc into Hc,−1 as a dense subspace. A given element
[z] ∈ Hc,−1 is of the form ι(x) for some x ∈ Hc if and only if there is a choice

of y in Y so that the function μ �→ z(μ) + ϕ̃(μ)y

α + μ
is not only in Hc but also in

Hc,1 = dom (Ac) for some (or equivalently for every) α ∈ C
+.

2. Define an operator Ac|Hc : Hc → Hc,−1 by

Ac|Hc x := [μ �→ −μx(μ)], x ∈ Hc, μ ∈ C
+. (4.63)

When Hc is identified as a linear sub-manifold of Hc,−1 via the embedding map ι

above, then Ac|Hc is the unique extension of Ac : dom (Ac) → Hc to a continuous
operator Hc → Hc,−1. Moreover, the following operator is unitary from Hc,−1 to
Hc

(
(β − Ac|Hc)

−1[x])(μ) = x(μ) + ϕ̃(μ)y

β + μ
, [x] ∈ Hc,−1, μ ∈ C

+, (4.64)

where the condition μ �→ x(μ)+ϕ̃(μ)y
β+μ

∈ Hc uniquely determines ϕ̃(·)y.
3. The action of Bc : U → Hc,−1 is given by

Bcu := [μ �→ u], u ∈ U , μ ∈ C
+.
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Proof Completeness of Hc,−1 is proved precisely the same way as completeness of
Hd

c,−1 was proved in Theorem 4.7: For a Cauchy sequence [xn] in Hc,−1, denote the

limit of the Cauchy sequence zn := μ �→ xn(μ)+ϕ̃(μ)yn
β+μ

in Hc by z. Then [xn] → [x]
in Hc,−1, where x(μ) = (β + μ)z(μ), μ ∈ C

+.

1. It is clear that ι(Hc) ⊂ Hc,−1, since by (4.51),

μ �→ x(μ) + ϕ̃(μ)y

β + μ
= (β − Ac)

−1x ∈ Hc,1 ⊂ Hc

with y = −τc,αx . We prove denseness of Hc in Hc,−1 in the proof of assertion
two.
Next assume that the function g(μ) := z(μ)+ϕ̃(μ)y

α+μ
lies in dom (Ac) for some

α ∈ C
+. We need to prove that x := (α − Ac)g ∈ Hc has the property [z] = ι(x).

We may use formula (4.44) to compute

(
(α − Ac)g

)
(μ) = (α + μ)g(μ) + ϕ̃(μ)Ccg

= z(μ) + ϕ̃(μ)y + ϕ̃(μ)Ccg

= z(μ) + ϕ̃(μ)
(
y + Ccg

) = x(μ),

and we can conclude that [z] = [x], where x ∈ Hc.
The converse implication is seen as follows. Assume that [z] = [x] with x ∈ Hc

and let α ∈ C
+ be arbitrary. Then z(μ) = x(μ) + ϕ̃(μ)γ for some γ ∈ Y , and by

(4.51) it holds that

(
(α − Ac)

−1x
)
(μ) = x(μ) − ϕ̃(μ)τc,αx

α + μ
= z(μ) − ϕ̃(μ)(τc,αx + γ )

α + μ
.

Choosing y := −τc,αx − γ , we thus have that μ �→ z(μ)+ϕ̃(μ)y
α+μ

∈ dom (Ac) for

every α ∈ C
+.

2. If x ∈ Hc and z(μ) = −μx(μ), then [βx − z] ∈ Hc,−1 since

μ �→ βx(μ) − z(μ)

β + μ
= x ∈ Hc; (4.65)

take y = 0 in (4.61). Moreover, βx ∈ Hc ⊂ Xc,−1, and it follows that [z] = [μ �→
−μx(μ)] ∈ Hc,−1. This shows that (4.63) defines an operator from all of Hc into
Hc,−1. If it happens that x ∈ dom (Ac) then Ac|Hc x = [Acx] by (4.44), and hence
Ac|Hc is an extension of Ac.
The operator in (4.64) maps Hc,−1 into Hc and it equals (β − Ac|Hc)

−1, because
(4.63) gives

[
(β − Ac|Hc)

−1[x]] =
[
μ �→ x(μ)

β + μ

]
, μ ∈ C

+,
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and as [x] ∈ Hc,−1, there by (4.61) exists a y ∈ Y such that μ �→ x(μ)+ϕ̃(μ)y
β+μ

∈ Hc.

By (4.61), (4.62), and (4.64), (β − Ac|Hc)
−1 maps Hc,−1 isometrically into Hc.

On the other hand, for an arbitrary z ∈ Hc, x := μ �→ (β + μ)z(μ) satisfies
[x] ∈ Hc,−1 and (β − Ac|Hc )

−1[x] = z. Thus (β − Ac|Hc)
−1 is onto Hc, and

from here it follows by a standard argument that Ac|Hc ∈ B(Hc,Hc,−1).
3. Combining (4.7) with the formula for Ac|Hc , we see that for arbitrary α ∈ C

+:

Bcu = (α − Ac|Hc)ec(α)∗u

=
[
μ �→ (α + μ)

1 − ϕ̃(μ)ϕ(α)

μ + α
u

]
= [μ �→ u], u ∈ U , μ ∈ C

+.

��

It follows from Assertion 3 in Theorem 4.19 that all constant functions [μ �→ u]
are in Hc,−1, but here they have non-zero norm in general. This can actually be seen
directly in (4.61), by choosing y := −ϕ(β)u; then the function in (4.62) is ec(β)∗u,
and ‖[u]‖Hc,−1 = ∥∥ec(β)∗u

∥∥Hc
�= 0.

So far we only know the resolvent of Ac|Hc at the single point β corresponding
to the rigging. Based on (4.51) and (4.64), it seems plausible to guess that for other
α ∈ C

+ the resolvent at α would be

(
(α − Ac|Hc)

−1[x])(μ) = x(μ) + ϕ̃(μ)γ

α + μ
, [x] ∈ Hc,−1, α, μ ∈ C

+, (4.66)

for some γ ∈ Y , which depends on [x] and α.

Proposition 4.20 Assume that (4.56) holds. For [x] ∈ Hc,−1, let y ∈ Y be such that

μ �→ x(μ)+ϕ̃(μ)y
β+μ

∈ Hc. Then (4.66) holds with the choice

γ := y + (β − α)τc,α
x(·) + ϕ̃(·)y

β + · .

Proof We can use the resolvent formula

(α − Ac|Hc)
−1 = (β − Ac|Hc )

−1 + (β − α)(α − Ac)
−1(β − Ac|Hc)

−1

together with (4.51) and (4.64) to calculate (for μ ∈ C
+):

(
(α − Ac|Hc)

−1[x])(μ) = x(μ) + ϕ̃(μ)y

β + μ

+(β − α)

x(μ)+ϕ̃(μ)y
β+μ

− ϕ̃(μ)τc,α
x(·)+ϕ̃(·)y

β+·
α + μ

. (4.67)
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Straightforward simplifications show that (4.67) minus the right-hand side of (4.66)
equals

ϕ̃(μ)

α + μ

(
y − γ + (β − α)τc,α

x(·) + ϕ̃(·)y

β + ·
)

, (4.68)

which proves the claim. ��

4.6 An Example: Constant Schur Functions

We illustrate some of the results so far using the case of a constant ϕ. Assume that
ϕ(μ) = Dc for all μ ∈ C

+, so that ϕ ∈ S(C+;U ,Y) if and only if ‖Dc‖ ≤ 1.
Then it follows from (4.50) that τc,α = 0 and Cc = 0, and Corollary 4.15 then
yields that (α − Ac)

−1x = μ �→ x(μ)/(α + μ), μ ∈ C
+, and by Theorem 4.10,

(Acx)(μ) = −μx(μ), μ ∈ C
+, for x ∈ dom (Ac), where

dom (Ac) = (α − Ac)
−1Hc =

{
μ �→ z(μ)

α + μ

∣∣∣∣z ∈ Hc, μ ∈ C
+
}

. (4.69)

Here α ∈ C
+ is arbitrary, and by Definition 3.1, we also have

dom (Ac) = {x ∈ H|Acx ∈ Hc} = {x ∈ Hc|μ �→ μx(μ) ∈ Hc},

so that (4.53) holds with the additional simplification that we only need to consider
y = 0.

Now Theorem 4.12 gives (for some arbitrary α ∈ C
+)

dom
([

A&B
C&D

]

c

)

=
{[

x
u

]
∈
[Hc

U
] ∣∣
∣∣

(α + μ)x(μ) − (1 − D∗
c Dc)u

α + μ
∈ dom (Ac)

}

=
{[

x
u

]
∈
[Hc

U
] ∣∣∣∣μ �→ −μx(μ) + (1 − D∗

c Dc)u ∈ Hc

}
, and

[
A&B
C&D

]

c

[
x
u

]
=
[
μ �→ −μx(μ) + (1 − D∗

c Dc)u
Dcu

]
, (4.70)

where we used (4.69) and that αx ∈ Hc in the second equality. Note that the arbitrary
parameter λ ∈ C

+ in (4.48) does not appear here.
In (4.70) the state part is purely for energy accounting, since the output is inde-

pendent of the current state. If it happens that Dc is isometric, then the energy is
preserved without any state needing to absorb energy, and indeed Hc = {0} in this
case, as can easily be seen from the reproducing kernel Kc of Hc. Then the realiza-
tion consists only of the static operator Dc. If Dc is not isometric, then the function
Bcu = μ �→ (1 − D∗

c Dc)u, μ ∈ C
+, never lies in Hc unless it is zero. Thus Bc is
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strictly unbounded (in the terminology of [32]), and it is interesting that both Ac and
Bc are unbounded even though the transfer function ϕ is rational, even constant.

We make the following observations on the dual system node
[

A&B
C&D

]∗
c : Due to

Theorem 4.4, the first equality holds in

dom

([
A&B
C&D

]∗
c

)
=
{[

x
y

]
∈
[Hc

Y
] ∣∣∣∣

∃u ∈ U : μ �→ μx(μ) + D∗
c y − u ∈ Hc

}

=
[

dom
(

A∗
c

)

Y
]

, (4.71)

where as usual

dom
(

A∗
c

) = {x ∈ Hc|∃u ∈ U : μ �→ μx(μ) − u ∈ Hc},

because for all x ∈ Hc and y ∈ Y , it holds that

∃u ∈ U : μ �→ μx(μ) + D∗
c y − u ∈ Hc ⇐⇒ ∃v ∈ U : μ �→ μx(μ) − v ∈ Hc.

It is a rare convenience that the domain of a system node decomposes into a product
space in this way; it is for instance not the case for

[
A&B
C&D

]
c itself.

The fact that C∗
c = 0 can also be seen in (4.33), since

‖C∗
c y‖Hd

c,−1
= ∥∥[μ �→ D∗

c y]∥∥Hd
c,−1

= 0, y ∈ dom A∗
c .

A consequence of C∗
c = 0 is that [A∗

c&C∗
c ][xy] = A∗

c x = μ �→ μx(μ)− lim
η→∞ ηx(η).

This agrees with (4.18)–(4.19), since lim
Reη→∞ ϕ̃(η)y = ϕ̃(μ)y, μ ∈ C

+, and these

terms cancel in (4.18).
Due to Proposition 2.6, we have that ϕ̃(·)y = μ �→ D∗

c y ∈ Hc only if D∗
c y = 0,

and thus (4.54) holds. The implication (4.59), on the other hand, holds if and only if
D∗

c is injective, i.e., Dc has range dense in Y . By Theorem 4.17, Dc has dense range
and (4.56) holds if and only if

[
A&B
C&D

]
c in (4.70) is conservative.

4.7 Reproducing Kernels of the Rigged Spaces

We finish our study of the controllable realization by calculating the reproducing ker-
nels associated to the rigged spaces. In this subsection we do not make any additional
assumptions, such as (4.56), unless otherwise indicated.

Recall that the state space Hc for the system node
[

A&B
C&D

]
c is a reproducing kernel

Hilbert space with reproducing kernel Kc as in (4.1). By construction the 1-scaled
rigged space Hd

c,1 of the dual also consists of U-valued functions and it is not difficult

to see that the point-evaluation map ed
c,1(μ) is bounded in Hd

c,1-norm and hence Hd
c,1

is also a reproducing kernel Hilbert space. The same is true for Hc,1.
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Technically the (−1)-scaled rigged spaces Hd
c,−1 and Hc,−1 are not reproducing

kernel Hilbert spaces since they consist of equivalence classes of functions rather than
of functions. However, while point-evaluation is not well-defined on Hd

c,−1, the map
[z] �→ z(μ)− z(α) is well-defined for all fixed α ∈ C

+; this amounts to evaluating the
unique member z of the equivalence class [z] normalized to satisfy z(α) = 0. Here it
is most convenient to choose α = β, the parameter used to define the Hd

c,1 and Hd
c,−1

norms.
If we define ed

c,−1(μ) : Hd
c,−1 → U by

ed
c,−1(μ)[z] := z(μ) − z(β), [z] ∈ Hd

c,−1, μ ∈ C
+,

then ed
c,−1(μ) is also bounded for every μ ∈ C

+. More precisely, ‖ed
c,−1‖ ≤ |β −

μ| ‖ec(μ)‖, since we by (4.32) have

∥∥∥ed
c,−1(μ)[z]

∥∥∥U = ‖z(μ) − z(β)‖U =
∥∥∥ec(μ)(β − μ)

(
(β − A∗

c |Hc )
−1[z])

∥∥∥U
≤ ‖ec(μ)‖ |β − μ| ‖[z]‖Hd

c,−1
, [z] ∈ Hd

c,−1.

We may then consider the function

K d
c,−1(μ, λ) = ed

c,−1(μ)ed
c,−1(λ)∗, μ, λ ∈ C

+,

to be the reproducing kernel for Hd
c,−1.

Suppose that x ∈ Hc,−1. With assumption (4.56) in force, there is a unique choice
of function ϕ̃(·)yx so that μ �→ x(μ)+ϕ̃(μ)yx

β+μ
∈ Hc. The space Hc,−1 is defined as

equivalence classes whereby [x] = [x ′] means that x − x ′ = μ �→ ϕ̃(μ)y, for
some choice of y ∈ Y . To define a point evaluation ec,−1(λ) on Hc,−1, we have
to choose a canonical representative of each equivalence class. We choose as our
canonical representative the function μ �→ x(μ) + ϕ̃(μ)yx above. Thus we define
ec,−1(λ) : Hc,−1 → U by

ec,−1(λ) : [x] �→ x(λ) + ϕ̃(λ)yx ,
x + ϕ̃(·)yx

β + · ∈ Hc, λ ∈ C
+, (4.72)

and consider Kc,−1(μ, λ) := ec,−1(μ)ec,−1(λ)∗, μ, λ ∈ C
+, to be the reproducing

kernel of Hc,−1. The operator ec,−1(λ) is bounded for all λ ∈ C
+, since

∥∥ec,−1(λ)[x]∥∥U =
∥∥∥
∥(β + λ) ec(λ)

x + ϕ̃(·)yx

β + ·
∥∥∥
∥U

≤ |β + λ| ‖ec(λ)‖ ‖[x]‖Hc,−1 .

Proposition 4.21 We have the following formulas for the kernel functions associated
with the Hilbert spaces Hd

c,±1 and Hc,±1 (for μ, λ ∈ C
+):

Kc(μ, λ) = B∗
c (μ − A∗

c)
−1(λ − Ac|Hc)

−1 Bc, (4.73)
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K d
c,1(μ, λ) = B∗

c (μ − A∗
c)

−1(β − A∗
c)

−1

×(β − Ac)
−1(λ − Ac|Hc )

−1 Bc, (4.74)

K d
c,−1(μ, λ) = (β − μ)(β − λ)B∗

c (μ − A∗
c)

−1(λ − Ac|Hc)
−1 Bc, (4.75)

Kc,1(μ, λ) = B∗
c (μ − A∗

c)
−1(β − Ac)

−1

×(β − A∗
c)

−1(λ − Ac|Hc )
−1 Bc, (4.76)

Kc,−1(μ, λ) = (β + μ)(β + λ)B∗
c (μ − A∗

c)
−1(λ − Ac|Hc)

−1 Bc. (4.77)

The above state-space formulas correspond to the following purely function-theoretic
formulas (for μ, λ ∈ C

+):

Kc(μ, λ) = 1 − ϕ(μ)∗ϕ(λ)

μ + λ
,

K d
c,1(μ, λ) = Kc(μ, λ) − Kc(μ, β)

(β − μ)(β − λ)
− Kc(β, λ) − Kc(β, β)

(β − μ)(β − λ)
, (4.78)

K d
c,−1(μ, λ) = (β − μ)(β − λ)Kc(μ, λ), (4.79)

Kc,1(μ, λ) = κc(μ, λ) − ϕ(μ)∗τc,β
(
κc(·, λ)

)

β + μ
, where

κc(μ, λ) := Kc(μ, λ) − Kc(β, λ)

β − μ
, (4.80)

Kc,−1(μ, λ) = (β + μ)(β + λ)Kc(μ, λ). (4.81)

Here the point β ∈ C
+ appearing in the formulas must be chosen to be the same

β which was used in the rigging Hc,1 ⊂ Hc ⊂ Hc,−1, so that β corresponds to the
rigging Hd

c,1 ⊂ Hc ⊂ Hd
c,−1. The formulas (4.77) and (4.81) depend on Theorem4.19

and hence they are established only for the case when (4.56) holds.

Proof To see (4.73), combine part 3 of Theorem 1.1 with formula (4.7):

Kc(μ, λ) = ec(μ)ec(λ)∗ = B∗
c (μ − A∗

c |Hc)
−1(λ − Ac|Hc)

−1 Bc.

As for (4.74), we use that (β − A∗
c)

−1 is a unitary transformation from Hc to Hd
c,1.

Hence any f ∈ Hd
c,1 has the form f = (β − A∗

c)
−1g for a unique g ∈ Hc, and for

λ ∈ C+ we can compute

〈 f (λ), u〉U = 〈((β − A∗
c)

−1g)(λ), u〉U
= 〈(β − A∗

c)
−1g, ec(λ)∗u〉Hc

= 〈g, (β − Ac)
−1ec(λ)∗u〉Hc

= 〈 f, (β − A∗
c)

−1(β − Ac)
−1ec(λ)∗u〉Hd

c,1
.

Combining this with the fact that the point-evaluation operator in Hd
c,1 is the restriction

of ec(·) to Hd
c,1, we obtain (4.74). In order to get (4.78), we continue calculating
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ec(μ)(β − A∗
c)

−1(β − Ac)
−1ec(λ)∗u = ec(μ)(β − A∗

c)
−1 ec(λ)∗ − ec(β)∗

β − λ
u

=
Kc(μ,λ)−Kc(μ,β)

β−λ
− Kc(β,λ)−Kc(β,β)

β−λ

β − μ
u,

where we used (4.39) and (4.23) in the first and second equalities, respectively.
The formula (4.76) follows immediately on replacing β − A∗

c by β − Ac in (4.74),
since (β − Ac)

−1 is the appropriate unitary operator from Hc to Hc,1 instead of
(β − A∗

c)
−1. Using (4.23) and (4.51), we obtain (4.80).

In order to establish (4.75), we use that (β − A∗
c |Hc) is a unitary transformation

from Hc to Hd
c,−1. Thus any [ f ] ∈ Hd

c,−1 has the form [ f ] = (β − A∗
c |Hc)g with

g ∈ Hc. Furthermore, from (4.34) we have that the unique representative f for the
equivalence class [ f ] satisfying f (β) = 0 is given by f (μ) = (β − μ)g(μ). Hence,
we have, for λ ∈ C

+,

〈 f (λ), u〉U = 〈(β − λ)g(λ), u〉U
= 〈g, (β − λ)ec(λ)∗u〉Hc

= 〈 f, (β − λ)(β − A∗
c |Hc)ec(λ)∗u〉Hd

c,−1
. (4.82)

This proves that
(
ed

c,−1(λ)
)∗

u = (β − λ)(β − A∗
c |Hc )ec(λ)∗u, and combining this

with (4.31) we obtain (4.79), again choosing the representative with value zero at β.
Now (4.75) follows from (4.79) and (4.73).

In order to obtain (4.81) and (4.77), we use (4.72) to compute

〈[x], ec,−1(λ)∗u〉Hc,−1 = 〈ec,−1(λ)[x], u〉U = 〈x(λ) + ϕ̃(λ)yx , u〉U
=
〈

x(λ) + ϕ̃(λ)yx

β + λ
, (β + λ)u

〉

U
,

and using (4.63) with the unitarity of β − Ac|Hc , we further obtain that this equals

〈
μ �→ x(μ) + ϕ̃(μ)yx

β + μ
,μ �→ Kc(μ, λ)(β + λ)u

〉

Hc

= 〈[x], [μ �→ (β + μ)(β + λ)Kc(μ, λ)u]〉Hc,−1
.

We conclude that

ec,−1(λ)∗ = [μ �→ (β + μ)(β + λ)Kc(μ, λ)],

and since μ �→ (β + λ)Kc(μ, λ) ∈ Hc, we have ec,−1(μ)ec,−1(λ)∗ = (β + μ)(β +
λ)Kc(μ, λ). ��

The following result follows from (4.74), (4.76), and the unitarity of (β− Ac|Hc)
−1

and (β − A∗
c |Hc)

−1.
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Corollary 4.22 For all μ, λ ∈ C
+ and u, v ∈ U , we have

(
K d

c,1(μ, λ)u, v
)

U = (Kc(·, λ)u, Kc(·, μ)v)Hc,−1
and

(
Kc,1(μ, λ)u, v

)
U = (Kc(·, λ)u, Kc(·, μ)v)Hd

c,−1
.

We now turn our attention to the observable functional model.

5 The Observable Co-Energy-Preserving Model

In this section we present the observable co-energy-preserving model realization of
a given ϕ ∈ S(C+;U ,Y) which uses the reproducing kernel Hilbert space Ho as
state space. We have already seen in Sect. 2 that Ko(μ, λ) = 1−ϕ(μ)ϕ(λ)∗

μ+λ
is a positive

kernel with associated reproducing kernel Hilbert space denoted as Ho. Rather than
defining the system node

[
A&B
C&D

]
o directly, it is more tractable to first define its adjoint

[
A&B
C&D

]∗
o. The adjoint is first defined via the mapping

[
A&B
C&D

]∗

o
:
[

eo(λ)∗y
y

]
�→
[
λeo(λ)∗y
ϕ̃(λ)y

]
, y ∈ Y, λ ∈ C

+, (5.1)

cf. (4.2). One can then mimic the proof of Lemma 4.1 to see that this mapping can
be extended uniquely to a well-defined closed linear operator

[
A&B
C&D

]∗
o. One can then

mimic the whole development of Sect. 4 to arrive at the sought-after results for the
observable co-energy-preserving case here.

A logically more efficient (if not as intuitively appealing) procedure is to reduce
the results for the observable co-energy-preserving case to those of Sect. 4 for the
controllable energy-preserving case by the following duality trick. As was noted in
Proposition 3.10, if ϕ(μ) is the transfer function of the system node

[
A&B
C&C

]
, then[

Ad &Bd

Cd &Dd

]
:= [

A&B
C&D

]∗ is a system node with transfer function equal to ϕ̃(μ) = ϕ(μ)∗.

Observe that the transformation ϕ �→ ϕ̃ maps the Schur class S(C+;U ,Y) bijectively
to the Schur class S(C+;Y,U). Given a Schur-class function ϕ ∈ S(C+;U ,Y), let[

A&B
C&D

]∼
c be the controllable energy-preserving canonical functional-model system

node constructed as in Sect. 4 but associated with ϕ̃ rather than with ϕ. Then its
adjoint

([
A&B
C&D

]∼

c

)∗
=:
[

Ãd
c &B̃d

c
C̃d

c &D̃d
c

]

is also a system node which has transfer function (ϕ̃)∼ = ϕ. Since
[

A&B
C&D

]∼
c is con-

trollable and energy-preserving by construction, as was observed in Theorem 4.2, it

follows that
[

Ãd &B̃d
c

C̃d
d &D̃d

c

]
is observable and co-energy-preserving. One can then define

the associated observable, co-energy-preserving canonical functional-model system
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node associated with ϕ by

[
A&B
C&D

]

o
=
[

Ãd
c &B̃d

c
C̃d

c &D̃d
c

]
.

Note that every result concerning the controllable energy-preserving canonical
functional-model system node

[
A&B
C&D

]
c obtained in Sect. 4 carries over to a corre-

sponding result for
[

A&B
C&D

]
o: Simply apply the result from Sect. 4 but with ϕ̃ in place

of ϕ and then express the result in terms of operators associated with the adjoint sys-
tem node

[
A&B
C&D

]
o = ([

A&B
C&D

]∼
c

)∗
rather than with

[
A&B
C&D

]∼
c itself. In this section we

state the most interesting results but leave all of the proofs to the reader. The reader is
invited to supply the proofs by either of the two routes sketched above.

The following result is the observable, co-energy-preserving analogue of
Lemma 4.1, and Theorems 4.2 and 4.4 combined.

Theorem 5.1 Suppose that we are given a function ϕ ∈ S(C+;U ,Y) and define
Ho = H(Ko) as above.

1. The mapping (5.1) which was defined initially only on elements of the form[
eo(λ)∗ y

y

] ∈ [Ho
Y
]

extends by linearity and limit-closure uniquely to a closed linear
operator

[
A&B
C&D

]∗

o
:
[Ho

Y
]

⊃ dom
([

A&B
C&D

])∗
o

→
[Ho

U
]

(5.2)

which is a controllable, energy-preserving system node having transfer function
equal to ϕ̃(μ) = ϕ(μ)∗, μ ∈ C

+.
2. The adjoint of the system node

[
A&B
C&D

]∗
o given by (5.2), namely

[
A&B
C&D

]

o
:
[Ho

U
]

⊃ dom

([
A&B
C&D

]

o

)
→
[Ho

Y
]

, (5.3)

is an observable, co-energy-preserving system node with transfer function equal
to ϕ.

3. The system node (5.3) can be characterized more directly as follows:

[
A&B
C&D

]

o
:
[

x
u

]
�→
[

z
y

]
, where (5.4)

z(μ) := μx(μ) + ϕ(μ)u − y, μ ∈ C
+, and (5.5)

y := lim
Re η→∞ ηx(η) + ϕ(η)u, defined on

dom

([
A&B
C&D

]

o

)
:=
{[

x
u

]
∈
[Ho

U
] ∣∣∣∣∃y ∈ Y : z ∈ Ho in (5.5)

}
. (5.6)

For every
[

x
u
] ∈ dom

([
A&B
C&D

]
o

)
, the y ∈ Y such that z given in (5.5) lies in Ho is

unique and it is given by (5.6).
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4. The kernel functions Ko(·, λ) = eo(λ)∗, λ ∈ C
+, for the space Ho are given by

eo(λ)∗ = (λ − A∗
o|Ho)

−1C∗
o , λ ∈ C

+.

Remark 4.8 applies with minor modifications to
[

A&B
C&D

]
o. The following result (the

analogue of Theorem 4.3) explains the canonical property for the functional-model
system node

[
A&B
C&D

]
o.

Theorem 5.2 Let
[

A&B
C&D

]
be an observable and co-energy-preserving realization of

ϕ with state space X . Define the operator � : Ho → X as the unique continuous
linear extension of the mapping

� : eo(λ)∗y �→ (
λ − A∗|X

)−1
C∗y, λ ∈ C

+, y ∈ Y .

Then � is unitary from Ho to X , the operator
[

� 0
0 1U

]
maps dom

([
A&B
C&D

]
o

)
one-to-one

onto dom
([

A&B
C&D

])
, and

[
A&B
C&D

] [
� 0
0 1U

]
=
[
� 0
0 1Y

] [
A&B
C&D

]

o
.

The proof is simply an application of Theorem 4.3 to
[

A&B
C&D

]∗ and
[

A&B
C&D

]∗
o. The

following result provides formulas involving the resolvent of
[

A&B
C&D

]
o.

Theorem 5.3 The main operator Ao of
[

A&B
C&D

]
o is given explicitly by

(Aox)(μ) = μx(μ) − lim
Re η→∞ ηx(η), μ ∈ C

+,

for x in dom (Ao) = {x ∈ Ho|∃y ∈ Y : μ �→ μx(μ) − y ∈ Ho}, and the observation
operator is

Cox = lim
Re η→∞ ηx(η), x ∈ dom (Ao).

The resolvent of Ao is given by

(
(α − Ao)

−1x
)
(μ) = x(μ) − x(α)

α − μ
, α,μ ∈ C

+, x ∈ Ho. (5.7)

Denoting the control operator of
[

A&B
C&D

]
o by Bo, we have the following formulas:

(
Ao(α − Ao)

−1x
)
(μ) = μx(μ) − αx(α)

α − μ
, α,μ ∈ C

+, x ∈ Ho,

(
(α − Ao|Ho)

−1 Bou
)
(μ) = ϕ(μ) − ϕ(α)

α − μ
u, α, μ ∈ C

+, u ∈ U , (5.8)

Co(α − Ao)
−1x = x(α), α ∈ C

+, x ∈ Ho.
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5.1 The Dual System Node and Extrapolation Spaces

Just as in Sect. 4.3 for the controllable, energy-preserving case, the formula (5.7) for
the resolvent of Ao suggests a way to concretely identify the (−1)-scaled rigged space
Ho,−1 defined abstractly as the completion of the space Ho in the norm

‖x‖ = ‖(β − Ao)
−1‖Ho .

Namely we define

Ho,−1 =
{

x : C
+ → Y

∣∣
∣μ �→ x(μ) − x(β)

β − μ
∈ Ho

}
(5.9)

with norm given by

‖x‖Ho,−1 =
∥∥
∥∥μ �→ x(μ) − x(β)

β − μ

∥∥
∥∥Ho

. (5.10)

We emphasize again that the Ho,−1 norm (and inner product) depends on the choice
of β ∈ C+; different choices of β give different norms although all such norms
are equivalent. The elements of Ho,−1 are equivalence classes of functions modulo
constant terms. We have the following analogue of Theorem 4.7:

Theorem 5.4 The space Ho,−1 given by (5.9) and (5.10) is complete.

1. The map ι : x �→ [x] embeds Ho into Ho,−1 as a dense subspace. A given element
[z] ∈ Ho,−1 is of the form ι(x) for some x ∈ Ho if and only if the function

μ �→ z(μ) − z(β)

β − μ
, μ ∈ C

+, is not only in Ho but in fact is in dom (Ao) =
Ho,1 ⊂ Ho. When this is the case, the equivalence class representative x for [z],
for which x ∈ Ho, is uniquely determined by the decay condition at infinity:

lim
Re η→∞ x(η) = 0.

2. Define an operator Ao|Ho : Ho → Ho,−1 by

Ao|Ho x := [μ �→ μx(μ)], x ∈ Ho, μ ∈ C
+.

When Ho is identified as a linear sub-manifold of Ho,−1, then Ao|Ho is the unique
extension of Ao : dom (Ao) → Ho to an operator in B(Ho;Ho,−1). Moreover,
(β − Ao|Ho)

−1 is a unitary map from Ho,−1 to Ho.
3. With Ho,−1 identified concretely as in (5.9), the action of Bo : U → Ho,−1 is given

by

Bou := [μ �→ ϕ(μ)u], u ∈ U , μ ∈ C
+.
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We shall now present formulas for the action of the operators of the dual of
[

A&B
C&D

]
o

on generic functions in their domains. For α ∈ C
+ we define τo,α : Ho → U by

τo,α := B∗
o (α − A∗

o)
−1, α ∈ C

+,

and it follows from (5.8) that

(τo,α)∗u = μ �→ ϕ(μ) − ϕ(α)

α − μ
u, u ∈ U , μ ∈ C

+.

The map τo,α enters into the explicit formula for the resolvent of A∗
o acting on generic

elements of Ho, as described in the following analogue of Corollary 4.15 and Theo-
rem 4.10:

Theorem 5.5 The following claims are true:

1. For arbitrary
[ x

y

] ∈ dom

([
A&B
C&D

]∗
o

)
, if we set u := [

B∗
o &D∗

o

] [ x
y
]
, then we get

[
A∗

o&C∗
o

] [x
y

]
= μ �→ −μx(μ) − ϕ(μ)u + y, μ ∈ C

+.

It follows that

dom
([

A&B
C&D

])∗
o

⊂
{[

x
y

]
∈
[Hc

Y
] ∣∣∣∣

∃u ∈ U : μ �→ −μx(μ) − ϕ(μ)u + y ∈ Ho

}
.

2. For x ∈ dom
(

A∗
o

)
the function A∗

ox ∈ Ho satisfies the identity

(
A∗

ox
)
(μ) = −μx(μ) − ϕ(μ)B∗

o x, μ ∈ C
+,

and in particular,

dom
(

A∗
o

) ⊂ {x ∈ Ho|∃u ∈ U : μ �→ μx(μ) + ϕ(μ)u ∈ Ho}. (5.11)

3. If we know A∗
o, then we can characterize dom

([
A&B
C&D

]∗
o

)
and

[
B∗

c &D∗
c

]
as follows,

for an arbitrary λ ∈ C
+:

dom

([
A&B
C&D

]∗
o

)
=
{[

x
y

]
∈
[Ho

Y
] ∣∣∣
∣x − eo(λ)∗y ∈ dom

(
A∗

o

)}
,

[
B∗

c &D∗
c

] [x
y

]
= τo,λ(λ − A∗

o)
(
x − eo(λ)∗y

)+ ϕ̃(λ);

neither of these two depends on the choice of λ ∈ C
+.
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4. We have the following formula for the resolvent of A∗
o:

(
(α − A∗

o)
−1x

)
(μ) = x(μ) − ϕ(μ) τo,α x

α + μ
, α,μ ∈ C

+, x ∈ Ho, (5.12)

and the action of this resolvent on kernel functions of Ho is

(α − A∗
o)

−1eo(λ)∗y = eo(λ)∗ − eo(α)∗

α − λ
y, α, λ ∈ C

+, y ∈ Y . (5.13)

The formula (5.13) is useful when calculating the reproducing kernel of Ho,1.
Similar to Lemma 4.16, with an added assumption, it is possible to strengthen the

containment in (5.11) to an equality. Moreover, we obtain a characterization of when
the observable energy-preserving realization is in fact conservative, cf. Theorem 1.5.

Theorem 5.6 The following two conditions are equivalent:

1. For some (or equivalently for every) α ∈ C
+, the state space Ho has the property

Ho ∩
{
μ �→ ϕ(μ)u

α + μ

∣∣∣
∣u ∈ U

}
= {0}. (5.14)

2. We have both

Ho ∩ {ϕ(·)u|u ∈ U} = {0} and (5.15)

dom
(

A∗
o

) = {x ∈ Ho|∃u ∈ U : μ �→ μx(μ) + ϕ(μ)u ∈ Ho}. (5.16)

The conditions (5.14)–(5.16) hold together with the implication ϕ(·)u = 0 ⇒ u =
0 if and only if

[
A&B
C&D

]
o is conservative. This is in turn true if and only if 1 −ϕ(·)∗ϕ(·)

has maximal factorable minorant in the right half-plane sense equal to 0.
When (5.15) holds, a given x ∈ Ho in dom

(
A∗

o

)
determines the function ϕ(·)u

appearing in (5.11) uniquely through the formula

ϕ(μ)u = ϕ(μ)B∗
o x, μ ∈ C

+. (5.17)

If
[

A&B
C&D

]
o is conservative, then x ∈ dom

(
A∗

o

)
further determines the vector u ∈ U

uniquely in (5.17).

Recall that Hd
o,−1 is defined to be the completion of Ho in the norm ‖x‖ =∥

∥(β − A∗
o)

−1x
∥
∥. With assumption (5.14) in force, Theorem 5.6 assures us that

dom
(

A∗
o

)
is given by (5.16). Then formula (5.12) suggests the following concrete

identification of the (−1)-rigged space:

Hd
o,−1 :=

{
x : C

+ → Y
∣∣∣∣∃u ∈ U : μ �→ x(μ) + ϕ(μ)u

β + μ
∈ Ho

}
. (5.18)
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Now the property (5.15) guarantees us that the choice of ϕ(·)u in (5.18) is uniquely
determined by x (whenever at least one suitable u ∈ U exists). For x ∈ Hd

o,−1 we set

‖x‖Hd
o,−1

:=
∥∥∥∥μ �→ x(μ) + ϕ(μ)u

β + μ

∥∥∥∥Ho

. (5.19)

Thus elements of Hd
o,−1 are equivalence classes of functions modulo the subspace

ϕ(·)U . These equivalence classes are denoted as [x] where x is any particular repre-
sentative of the equivalence class. We summarize the properties of the space Hd

o,−1 as
follows; see also Theorem 4.19:

Proposition 5.7 Assume that (5.14) holds. Then the space Hd
o,−1 given by (5.18)–

(5.19) above is complete, and moreover:

1. The map ι : x �→ [x] embeds Ho into Hd
o,−1 as a dense subspace. A given element

[z] ∈ Hd
o,−1 is of the form ι(x) for some x ∈ Ho if and only if there is a choice of

u so that the function μ �→ z(μ) + ϕ(μ)u

β + μ
, μ ∈ C

+, is not only in Ho but also in

Hd
o,1 = dom

(
A∗

o

)
. This choice of ϕ(·)u is then unique.

2. Define an operator A∗
o|Ho : Ho → Hd

o,−1 by

A∗
o|Ho x := [μ �→ −μx(μ)], x ∈ Ho, μ ∈ C

+.

When Ho is identified as a linear sub-manifold of Hd
o,−1 as in statement 1, then

A∗
o|Ho is the unique extension of A∗

o : dom
(

A∗
o

) → Ho to an operator in
B(Ho;Hd

o,−1). The resolvent of A∗
o|Ho is given by

(
(α − A∗

o|Hc)
−1[x])(μ) = x(μ) + ϕ(μ)u

α + μ
, [x] ∈ Hd

o,−1, α, μ ∈ C
+,

where the condition μ �→ x(μ)+ϕ(μ)u
α+μ

∈ Ho uniquely determines ϕ(·)u. Moreover,

(β − A∗
o|Hc)

−1 is unitary from Hc,−1 to Hc.
3. The action of C∗

o : Y → Hd
o,−1 is given by

C∗
o y := [μ �→ y], y ∈ Y, μ ∈ C

+.

We next present a collection of reproducing-kernel formulas. This is the dual version
of Proposition 4.21 and Corollary 4.22. Again, Ho,−1 and Hd

o,−1 are not spaces of
functions, but we can identify them with the Hilbert spaces with reproducing kernels

Ko,−1(μ, λ) = eo,−1(μ)
(
eo,−1(λ)

)∗ and

K d
o,−1(μ, λ) = ed

o,−1(μ)
(
ed

o,−1(λ)
)∗

,
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respectively, where

eo,−1(μ)[z] := z(μ) − z(β), [z] ∈ Ho,−1, μ ∈ C
+, and

ed
o,−1(μ) : (β − A∗

o|Ho)x �→ (β + μ)x(μ), x ∈ Ho, μ ∈ C
+,

are bounded operators that point-evaluate well-chosen representatives of the equiva-
lence classes in Ho,−1 and Hd

o,−1.

Proposition 5.8 We have the following formulas for the kernel functions associated
with the reproducing kernel Hilbert spaces Ho, Ho,±1, and Hd

o,±1 (with μ, λ ∈ C
+):

Ko(μ, λ) = Co(μ − Ao)
−1(λ − A∗

o|Ho)
−1C∗

o = 1 − ϕ(μ)ϕ(λ)∗

μ + λ
,

Ko,1(μ, λ) = Co(μ − Ac)
−1(β − Ao)

−1(β − A∗
o)

−1(λ − A∗
o|Ho)

−1C∗
o

= Ko(μ, λ) − Ko(μ, β)

(β − μ)(β − λ)
− Ko(β, λ) − Ko(β, β)

(β − μ)(β − λ)

Ko,−1(μ, λ) = (β − μ)(β − λ)Co(μ − Ao)
−1(λ − A∗

o|Ho)
−1C∗

o

= (β − μ)(β − λ)Ko(μ, λ),

K d
o,1(μ, λ) = Co(μ − Ac)

−1(β − A∗
o)

−1(β − Ao)
−1(λ − A∗

o|Ho)
−1C∗

o

= κo(μ, λ) − ϕ(μ)τo,β

(
κo(·, λ)

)

β + μ
, where

κo(μ, λ) := Ko(μ, λ) − Ko(β, λ)

β − μ
,

K d
o,−1(μ, λ) = (β + μ)(β + λ)Co(μ − Ao)

−1(λ − A∗
o|Ho)

−1C∗
o (5.20)

= (β + μ)(β + λ)Ko(μ, λ). (5.21)

Here β is the parameter used in the construction of the rigging dom (Ao) ⊂ Ho ⊂
Ho,−1 as usual. The formulas (5.20) and (5.21) have only been established under the
assumption (5.14).

Moreover, for all μ, λ ∈ C
+ and y, γ ∈ Y , we have

(
Ko,1(μ, λ)y, γ

)
Y = (Ko(·, λ)y, Ko(·, μ)γ )Hd

c,−1
and

(
K d

o,1(μ, λ)y, γ
)

Y = (Ko(·, λ)y, Ko(·, μ)γ )Hc,−1
.

This completes our study of the observable functional model.

6 Recovering the Classical de Branges–Rovnyak Models

In this section we use the so-called internal Cayley transformation to recover the
original de Branges–Rovnyak models (1.8) and (1.10). This Cayley transformation
is described in detail in [45, §12.3]; here we only include the small fragments of the
theory that we need.
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Following [45, Thm 12.3.6], the Cayley transform with parameter α ∈ res (A) of
the system node

[
A&B
C&D

]
is the bounded operator

[
A B
C D

]
from

[X
U
]

into
[X

Y
]

defined
by

A := (α + A)(α − A)−1, B := √
2Re α (α − A|X )−1 B,

C := √
2Re α C(α − A)−1, and D := D̂(α),

(6.1)

where A, A|X , and B are as in Definition 3.1, and C and D̂ are given by (3.4) and
(3.5), respectively.

We interpret the bounded operator
[

A B
C D

]
described by (6.1) as the connecting

operator of a discrete-time system with the same input space U , state space X , and
output space Y as

[
A&B
C&D

]
:

[
x(k + 1)

y(k)

]
=
[

A B
C D

] [
x(k)

u(k)

]
, k ∈ Z

+. (6.2)

As in the introduction, the transfer function of the system (6.2) is

D̂(z) = zC(1 − zA)−1B + D. (6.3)

The reader should be warned that the transfer function of a discrete-time system is
defined as C(z − A)−1B + D in [45], but the results can be translated from one setting
to the other by interchanging z and 1/z.

Recall that a discrete-time system with input space U , state space X , and output
space Y is (scattering) passive, energy preserving, or co-energy preserving, if and only
if the connecting operator is contractive, isometric, or co-isometric, respectively, from[X

U
]

to
[X

Y
]
; see e.g. [44, §5].

We use the linear fractional transformation

zα(μ) := α − μ

α + μ
, μ ∈ C

+ ⇐⇒ μα(z) = α − αz

1 + z
, z ∈ D, (6.4)

also referred to as a Cayley transformation, to map C
+ one-to-one onto D. In the

sequel, we often abbreviate zα(·) = z(·) and μα(·) = μ(·). By combining the resolvent
identity

(μ − A|X )−1 − (α − A|X )−1 = (α − μ)(α − A)−1(μ − A|X )−1, μ, α ∈ res (A),

with the definition (3.5) of the transfer function D̂, one can verify that the transfer
function in (6.3) satisfies

D̂(z) = D̂
(
μα(z)

)
,

1

z
∈ res (A), (6.5)

if
[

A&B
C&D

]
and

[
A B
C D

]
are related by (6.1).
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Remark 6.1 According to [44, Thms 3.1 and 3.2], the Cayley transform
[

A B
C D

]
is a

contraction (isometric) for some/for all α ∈ C
+ if and only if the original system[

A&B
C&D

]
is passive (energy preserving). Moreover,

[
A B
C D

]
is controllable (observable)

if and only if
[

A&B
C&D

]
is controllable (observable). The convention here that the transfer

function has the form zC(1−zA)−1B+D rather than C(z−A)−1B+D has no influence
on these general facts; see also [45, Sect. 12.3].

It is easy to show that the adjoint of
[

A B
C D

]
in (6.1) is the Cayley transform of the

dual of
[

A&B
C&D

]
with parameter α ∈ res (A∗) along lines similar to the proof of [45,

Lem. 6.2.14]. Hence
[

A B
C D

]
is a co-isometry for some/for all α ∈ C

+ if and only if[
A&B
C&D

]
is a co-energy-preserving system node.

6.1 The Observable Co-Energy-Preserving Models

It follows immediately from Theorem 5.3 and (6.1) that the internal Cayley transform
with parameter α ∈ C

+ of the observable co-energy-preserving model
[

A&B
C&D

]
o for

the Schur function ϕ on C
+ is the operator

[
Ao Bo
Co Do

]
, where

(Aox)(μ) = α + μ

α − μ
x(μ) − 2Re α

α − μ
x(α), x ∈ Ho, μ ∈ C

+,

(Bou)(μ) = √
2Re α

ϕ(μ) − ϕ(α)

α − μ
u, u ∈ U , μ ∈ C

+,

Cox = √
2Re α x(α), x ∈ Ho, and

Dou = ϕ(α)u, u ∈ U .

(6.6)

The system (6.6) is observable and isometric, and by (6.5) the transfer function φα

of (6.6) satisfies

φα(z) = ϕ
(
μα(z)

)
, z ∈ D. (6.7)

We denote the Hilbert space with reproducing kernel

Ko,α(z, w) := 1 − φα(z)φα(w)∗

1 − zw
, z, w ∈ D, (6.8)

by Ho,α . By assertion 4 of Theorem 1.3, the operator
[ Ao Bo

Co Do

]
must be unitarily similar

to the corresponding de Branges–Rovnyak discrete-time model realization
[ Ao Bo

Co Do

]
in

(1.8), constructed using the transfer function φα ∈ S(D;U ,Y) in (6.7). The following
result describes this unitary similarity:

Proposition 6.2 For arbitrary ϕ ∈ S(C+;U ,Y) and α ∈ C
+, the following claims

are true:

1. Let
[

A&B
C&D

]
o be the canonical observable co-energy-preserving model for ϕ ∈

S(C+;U ,Y). Then
[ Ao Bo

Co Do

]
in (6.6) is the Cayley transform with parameter α of[

A&B
C&D

]
o.
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2. The following linear operator maps Ho,α unitarily onto Ho:

(�α ξ)(μ) :=
√

2Re α

α + μ
ξ
(
zα(μ)

)
, ξ ∈ Ho,α, μ ∈ C

+, (6.9)

where α is the same in (6.4) and (6.9). The inverse is

(
(�α)−1 ζ

)
(z) =

√
2Re α

1 + z
ζ
(
μα(z)

)
, α ∈ C

+, ζ ∈ Ho, z ∈ D. (6.10)

3. Let
[

Ao Bo
Co Do

]
be the de Branges–Rovnyak model realization in (1.8) of φα . The

operator �α intertwines
[ Ao Bo

Co Do

]
and

[ Ao Bo
Co Do

]
:

[
Ao�α Bo

Co�α Do

]
=
[
�αAo �αBo

Co Do

]
. (6.11)

Proof We leave it to the reader to verify assertion 1 as described above (6.6). In order
to prove assertion 2, we for notational reasons first relate w to μ as z is related to λ in
(6.4):

wα(λ) := α − λ

α + λ
, λ ∈ C

+ ⇐⇒ λα(w) = α − αw

1 + w
, w ∈ D. (6.12)

The key to the unitarity of �α is the following relationship between the reproducing
kernels of Ho and Ho,α:

Ko
(
z(μ),w(λ)

) = (α + μ)(α + λ)

2Re α
Ko(μ, λ), μ, λ ∈ C

+, (6.13)

which follows from the fact that

1 − φα

(
z(μ)

)
φα

(
w(λ)

)∗

1 − z(μ)w(λ)
= 1 − ϕ(μ)ϕ(λ)∗

1 − α−μ
α+μ

α−λ

α+λ

= (α + μ)(α + λ)

2Re α

1 − ϕ(μ)ϕ(λ)∗

μ + λ
.

Combining (6.13) with (6.9) gives that the action of �α on kernel functions eo in Ho,α is

(
�αeo

(
w(λ)

)∗
y
)
(μ) = α + λ√

2Re α
eo(λ)∗y, λ ∈ C

+, y ∈ Y . (6.14)
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It now follows that �α is isometric, since (using (6.13) in the second equality)

(
�αeo

(
w(λ)

)∗
y, �αeo

(
z(μ)

)∗
γ
)
Ho

=
(

α + λ√
2Re α

eo(λ)∗y,
α + μ√
2Re α

eo(μ)∗γ
)

Ho

= (
Ko
(
z(μ),w(λ)

)
y, γ

)
Y

= (
eo
(
w(λ)

)∗
y, eo

(
z(μ)

)∗
γ
)

Ho
.

The Eq. (6.14) moreover implies that the range of �α contains the dense subspace
span

{
eo(λ)∗y|λ ∈ C

+, y ∈ Y} of Ho. We conclude that �α is unitary as claimed.
Formula (6.10) follows from (6.9) by denoting the right-hand side of (6.9) by ζ(μ),
changing the variable from μ ∈ C

+ to z ∈ D using (6.4), and solving for ξ(z).
The following calculations use (1.8) and prove (6.11):

(�αBou)(μ) =
√

2Re α

α + μ

φ
(
z(μ)

)− φ(0)

z(μ)
u = √

2Re α
ϕ(μ) − ϕ(α)

α − μ
u

= (Bou)(μ),

(�αAoξ)(μ) =
√

2Re α

α + μ

ξ
(
z(μ)

)− ξ(0)

z(μ)
= √

2Re α
ξ
(
z(μ)

)− ξ(0)

α − μ
,

(Ao�αξ)(μ) = α + μ

α − μ

√
2Re α

α + μ
ξ
(
z(μ)

)− 2Re α

α − μ

√
2Re α

α + α
ξ
(
z(α)

)

= √
2Re α

ξ
(
z(μ)

)− ξ(0)

α − μ
= (�αAoξ)(μ), and

Co�αξ = √
2Re α (�αξ)(α) = √

2Re α

√
2Re α

α + α
ξ
(
z(α)

) = ξ(0) = Coξ,

valid for all ξ ∈ Ho, μ ∈ C
+, and u ∈ U . ��

Note the interesting fact that

K d
o,−1(μ, λ) = (2Re β) Ko

(
zβ(μ),wβ(λ)

)
, μ, λ ∈ C

+,

cf. (5.20) and (6.13). We have no explanation for this coincidence.
The operator �α is called the inverse Cayley transform in [45]. It is the frequency-

domain analogue of the inverse Laguerre transform; see [45, Thm 12.3.1 and Def.
12.3.2]. This unitary mapping can be used for transferring knowledge from the very
well-known disk setting to the half-plane setting. For instance, by (6.9), the condition
(5.14) holds if and only if the only function in Ho,α of the form φα(·)u is the zero
function; also note that by (6.7) we have ϕ(μ)u = 0 for all μ ∈ C

+ if and only if
φα(z)u = 0 for all z ∈ D. Thus, the conditions (5.14) and ϕ(·)u = 0 ⇒ u = 0
hold if and only if the conditions (1.12) and (1.13) hold with φ = φα . By the last
assertion of Theorem 1.3, this is the case if and only if the corresponding observable
co-isometric realization Uo is unitary, which by Remark 6.1 is equivalent to

[
A&B
C&D

]
o

being conservative. This provides an alternative proof of the statement that (5.14)
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and ϕ(·)u = 0 ⇒ u = 0 hold together if and only if
[

A&B
C&D

]
o is conservative; see

Theorem 5.6. It is moreover easy to see that the internal Cayley transformation can be
used to convert the statements 3 in Theorem 1.5 to statement 4 in Theorem 4.17 and
the corresponding statement in Theorem 5.6.

6.2 The Controllable Energy-Preserving Models

We have seen in (1.7) and (1.9) that the model space Hc = H(Kc) over D arises
in the same way as Ho = H(Ko) but with φ̃(z) = φ(z)∗ in place of φ. Similarly
for the models over C

+, the model space Hc = H(Kc) arises in the same way as
Ho = H(Ko) but with ϕ̃(μ) = ϕ(μ)∗ in place of ϕ(μ); see (1.17). If we assume that
φα and ϕ are related according to (6.7), then we see that

ϕ̃(μ) = ϕ(μ)∗ = φ
(
zα(μ)

)∗ = φ
(

zα(μ)
)∗ = φ̃

(
zα(μ)

)
. (6.15)

This suggests that the appropriate mapping of C
+ onto D for the energy-preserving

setting should be μ �→ zα(μ) rather than μ �→ zα(μ). Indeed, defining

Kc,α(z, w) := 1 − φα(z)∗φα(w)

1 − zw
, z, w ∈ D, (6.16)

we obtain

Kc,α
(
zα(μ),wα(λ)

) = (α + μ)(α + λ)

2Re α
Kc(μ, λ), μ, λ ∈ C

+, (6.17)

and this leads to the following unitary similarity result for the discrete-time controllable
realizations:

Proposition 6.3 Let ϕ ∈ S(C+;U ,Y) and
[

A&B
C&D

]
c be the controllable energy-

preserving realization of ϕ given by the operator closure of (4.3). For arbitrary
α ∈ C

+, the following claims are true:

1. The Cayley transform with parameter α of the canonical controllable energy-
preserving model

[
A&B
C&D

]
c is the isometry

[ Ac Bc
Cc Dc

] : [Hc
U
] → [Hc

Y
]

given by

(Acx)(μ) = α − μ

α + μ
x(μ) − 2Re α

α + μ
ϕ̃(μ)τc,αx, x ∈ Hc, μ ∈ C

+,

Bcu = √
2Re α ec(α)∗u, u ∈ U ,

Ccx = √
2Re α τc,αx, x ∈ Hc, and

Dcu = ϕ(α)u, u ∈ U . (6.18)

2. Let Hc,α be the Hilbert space with reproducing kernel (6.16). Then �α in (6.9) is
unitary from Hc,α to Hc.
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3. The operator �α intertwines
[ Ac Bc

Cc Dc

]
in (6.18) and

[ Ac Bc
Cc Dc

]
in (1.10):

[
Ac�α Bc

Cc�α Dc

]
=
[
�αAc �αBc

Cc Dc

]
. (6.19)

Proof The formula for Bc follows from (6.1) and (4.7), and the formula for Cc from
(6.1) combined with (4.49). By (4.44) and (4.49), we have

(
Ac(α − Ac)

−1x
)
(μ) = −μ

(
(α − Ac)

−1x
)
(μ) − ϕ̃(μ)τc,αx, x ∈ Hc, μ ∈ C

+,

and combining this with (4.51) and (6.1) gives the formula for Ac. Due to (6.17) we
have

�α ec
(
wα(λ)

)∗
u = α + λ√

2Re α
ec(λ)∗u, λ ∈ C

+, u ∈ U , (6.20)

and the unitarity of �α follows from the argument in the proof of Proposition 6.2.2.
We have that Bc = �αBc, since by Theorem 1.4 and (6.20), it holds for all u ∈ U

that

�αBcu = �αec(0)∗u = �αec
(
wα(α)

)∗
u = α + α√

2Re α
ec(α)∗u = Bcu.

Moreover Cc = Cc�α , because by Theorem 1.4, (6.15), the unitarity of �α , and (4.50),
we have the following equalities, valid for all x ∈ Hc,α and y ∈ Y:

(Ccx, y)Y =
(

x, z �→ φ̃(z) − φ̃(0)

z
y

)

Hc

=
(

�αx, �α

(
z �→ φ̃(z) − φ̃(0)

z

)
y

)

Hc

=
(

�αx,

(

μ �→
√

2Re α

α + μ

φ̃
(
zα(μ)

)− φ̃
(
zα(α)

)

zα(μ)

)

y

)

Hc

=
(

�αx,

(
μ �→ √

2Re α
ϕ̃(μ) − ϕ̃(α)

α − μ

)
y

)

Hc

=
(√

2Re α τc,α �α x, y
)

Y .

Finally, by Theorem 1.4, (6.18), and (6.15), it holds for x ∈ Hc and μ ∈ C
+ that

(Ac�αx)(μ) = α − μ

α + μ

√
2Re α

α + μ
x
(
zα(μ)

)− 2Re α

α + μ
ϕ̃(μ) τc,α �α x

=
√

2Re α

α + μ

(
zα(μ) x

(
zα(μ)

)− φ̃
(
zα(μ)

)
Cc x

)

= (�αAcx)(μ). ��
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7 Final Remarks

We have developed a realization theory for arbitrary ϕ ∈ S(C+;U ,Y) that is com-
pletely analogous to the classical case worked out by de Branges and Rovnyak on the
complex unit disk D. The same general principles carry over from the discrete case,
but unboundedness of most of the involved operators makes it more complicated to
work out the details. By avoiding linear fractional transformations, we obtain more
insight into intricacies specific to continuous-time systems, such as the Hilbert space
riggings Hc,1 ⊂ Hc ⊂ Hc,−1, Ho,1 ⊂ Ho ⊂ Ho,−1, Hd

c,1 ⊂ Hc ⊂ Hd
c,−1, and

Hd
o,1 ⊂ Ho ⊂ Hd

o,−1.
Formulas for the canonical models

[
A&B
C&D

]
c and

[
A&B
C&D

]
o, as well as their component

operators, are summarized in the following tables:

Formulas related to
[

A&B
C&D

]
o.

Ho: H(Ko), the state space of the observable model
Ho,1: {x ∈ Ho|∃y ∈ Y : μ �→ μx(μ) − y ∈ Ho}, the domain of Ao

Ho,−1:

{
x : C

+ → Y|μ �→ x(μ) − x(α)

α − μ
∈ Ho

}
, equivalence classes

modulo constants
Ao: x �→ (

μ �→ μx(μ) − limRe η→∞ ηx(η)
)
, maps Ho,1 boundedly

into Ho

Ao|Ho : x �→ [μ �→ μx(μ)], element of B(Ho,Ho,−1)

Bo: u �→ [μ �→ ϕ(μ)u], operator in B(U ,Ho,−1)

Co: x �→ limRe η→∞ ηx(η), element of B(Ho,1,Y)

(α − Ao|Ho)
−1: x �→

(
μ �→ x(μ) − x(α)

α − μ

)
, operator in B(Ho,−1,Ho)

dom
([

A&B
C&D

]
o

)
:

{[
x
u
] ∈

[
Ho
U
] ∣∣
∣∣∃y ∈ Y : μ �→ μx(μ) + ϕ(μ)u − y ∈ Ho

}

[
A&B
C&D

]
o:

[
x
u

]
�→

[
μ �→ μx(μ) + ϕ(μ)u − y

y

]
, where x and u determine

y via y = limRe η→∞ ηx(η) + ϕ(η)u

Formulas related to
[

A&B
C&D

]
c.

Hc: H(Kc), the state space of the controllable model

(α − Ac)
−1: x �→ x(μ) − ϕ̃(μ)τc,α x

α + μ
, element of B(Hc;Hc,1)

Ac: x �→ (
μ �→ −μx(μ) − ϕ̃(μ)Ccx

)
, x ∈ dom (Ac)

Cc: τc,α(α − Ac) ∈ B(Hc,1,Y)
[

A&B
C&D

]
c:

[
x
u

]
�→
[
μ �→ −μx(μ) − ϕ(μ)∗γλ + (

1 − ϕ(μ)∗ϕ(λ)
)
u

γλ + ϕ(λ)u

]
,

where γλ = Cc
(
x − ec(λ)∗u

)
, for arbitrary λ ∈ C

+

The following formulas are valid only under the assumption (4.56):

Hc,1: {x ∈ Hc|∃y ∈ Y : μ �→ μx(μ) + ϕ̃(μ)y ∈ Hc}; this is the
domain of Ac
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Hc,−1:

{
x : C

+ → U
∣
∣∣∣∃y ∈ Y : μ �→ x(μ) + ϕ̃(μ)y

β + μ
∈ Hc

}
, consists

of equivalence classes modulo the subspace ϕ̃(·)Y ⊂ Hc,−1

dom
([

A&B
C&D

]
c

)
:

{
[

x
u
] ∈

[
Hc
U
] ∣∣∣∣∃y ∈ Y : μ �→ −μx(μ) − ϕ̃(μ)y + u ∈ Hc

}

Ac|Hc : [μ �→ −μx(μ)], lies in B(Hc,Hc,−1)

Bc: u �→ [μ �→ u], lies in B(U ,Hc,−1)

Note that the reason for making the assumption (4.56) is that it allows us to characterize
the spaces Hc,±1 and dom

([
A&B
C&D

]
c

)
. The formulas for Ac and Cc a circle definition.

This can be avoided in case ϕ̃(·)∩Hc = {0} which holds if (4.56) holds, since Ac can
then be defined without using Cc; see Remark 4.14.

We next describe how to derive Theorems 1.6 and 1.7 from [7] by using the same
method as was used in [10] to derive Theorems 1.2 and 1.3, replacing the unit disk
by the right half-plane. The multiplication operator Mϕ induced by a Schur function
ϕ ∈ S(C+;U ,Y) defines a contraction from H2(C+;U) into H2(C+;U). The graph
of this operator is a maximal nonnegative subspace Ŵ of the Kreı̆n space H2(C+;W),
where W = U �−Y (i.e., the Kreı̆n space W is the orthogonal sum of U and the anti-
space −Y of Y). This subspace is invariant under multiplication by the function λ �→
e−λ. The inverse Laplace transform maps Ŵ onto a maximal nonnegative right-shift
invariant subspace W+ of the Kreı̆n space L2(R+;W), which using the terminology
of [7] is called a (time domain) passive future behavior in W .

In [7] three different canonical state/signal realizations of W+ are constructed,
one which is controllable and energy preserving, another which is observable and
co-energy preserving, and a third which is simple and conservative. These three real-
izations are given in the time domain setting, but they can be mapped into frequency
domain realizations by arguing as in [10, Section 9], with the unit disk D replaced by
the right half-plane C

+. From these frequency domain realizations one can recover the
input/state/output realizations in Theorems 1.6 and 1.7 (as well as an additional simple
conservative one) by using the fundamental decomposition W = U � −Y of W to
get input/state/output representations of scattering type of the canonical state/signal
representations in [10], as was done in [10, Section 10] in the discrete-time setting.

Finally, we mention that a planned project for the future is to develop a canonical-
model of a conservative closely-connected (or simple) system node realization of a
Schur-class function over C

+ in the spirit of the present paper.
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