176 research outputs found

    Resonant Metalenses for Breaking the Diffraction Barrier

    Full text link
    We introduce the resonant metalens, a cluster of coupled subwavelength resonators. Dispersion allows the conversion of subwavelength wavefields into temporal signatures while the Purcell effect permits an efficient radiation of this information in the far-field. The study of an array of resonant wires using microwaves provides a physical understanding of the underlying mechanism. We experimentally demonstrate imaging and focusing from the far-field with resolutions far below the diffraction limit. This concept is realizable at any frequency where subwavelength resonators can be designed.Comment: 4 pages, 3 figure

    Opencage radio frequency coil for magnetic resonance imaging

    Get PDF
    International audienc

    Lipopeptides as dimerization inhibitors of HIV-1 protease

    Get PDF
    In AIDS therapy, attempts have been made to inhibit the virus-encoded enzymes, e.g, HIV-1 protease, using active site-directed inhibitors. This approach is questionable, however, due to virus mutations and the high toxicity of the drugs, An alternative method to inhibit the dimeric HIV protease is the targeting of the interface region of the protease subunits in order to prevent subunit dimerization and enzyme activity, This approach should be less prone to inactivation by mutation, A list of improved 'dimerization inhibitors' of HIV-1 protease is presented. The main structural features are a short `interface' peptide segment, including non-natural amino acids, and an aliphatic N-terminal blocking group. The high inhibitory power of some of the lipopeptides {[}e.g, palmitoyl-Tyr-Glu-Leu-OH, palmitoyl-Tyr-Glu-(L-thyronine)-OH, palmitoyl-Tyr-Glu-(L-biphenyl-alanine)-OH] with low nanomolar K-i values in the enzyme test suggests that mimetics with good bio-availability can be derived for AIDS therapy

    Simulated slidequakes: insights from DEM simulations into the high-frequency seismic signal generated by geophysical granular flows

    Get PDF
    Geophysical granular flows generate seismic signals known as ‘slidequakes’ or ‘landquakes’, with low-frequency components whose generation by mean forces is widely used to infer hazard-relevant flow properties. Many more such properties could be inferred by understanding the fluctuating forces that generate slidequakes’ higher frequency components and, to do so, we conducted discrete-element simulations that examined the fluctuating forces exerted by steady, downslope-periodic granular flows on fixed, rough bases. Unlike our previous laboratory experiments, our simulations precluded basal slip. We show that, in its absence, simulated basal forces’ power spectra have high-frequency components more accurately predicted using mean shear rates than using depth-averaged flow velocities, and can have intermediate-frequency components which we relate to chains of prolonged interparticle contacts. We develop a ‘minimal model’, which uses a flow’s collisional properties to even more accurately predict the high-frequency components, and empirically parametrize this model in terms of mean flow properties, for practical application. Finally, we demonstrate that the bulk inertial number determines not only the magnitude ratio of rapidly fluctuating and mean forces on a unit basal area, consistent with previous experimental results, but also the relative magnitudes of the high and intermediate-frequency force components

    Quasi Two-dimensional Transfer of Elastic Waves

    Full text link
    A theory for multiple scattering of elastic waves is presented in a random medium bounded by two ideal free surfaces, whose horizontal size is infinite and whose transverse size is smaller than the mean free path of the waves. This geometry is relevant for seismic wave propagation in the Earth crust. We derive a time-dependent, quasi-2D radiative transfer equation, that describes the coupling of the eigenmodes of the layer (surface Rayleigh waves, SH waves, and Lamb waves). Expressions are found that relate the small-scale fluctuations to the life time of the modes and to their coupling rates. We discuss a diffusion approximation that simplifies the mathematics of this model significantly, and which should apply at large lapse times. Finally, coherent backscattering is studied within the quasi-2D radiative transfer equation for different source and detection configurations.Comment: REVTeX, 36 pages with 10 figures. Submitted to Phys. Rev.

    Reconfigurable Intelligent Surfaces vs. Relaying: Differences, Similarities, and Performance Comparison

    Get PDF
    Reconfigurable intelligent surfaces (RISs) have the potential of realizing the emerging concept of smart radio environments by leveraging the unique properties of meta-surfaces. In this article, we discuss the potential applications of RISs in wireless networks that operate at high-frequency bands, e.g., millimeter wave (30-100 GHz) and sub-millimeter wave (greater than 100 GHz) frequencies. When used in wireless networks, RISs may operate in a manner similar to relays. This paper elaborates on the key differences and similarities between RISs that are configured to operate as anomalous reflectors and relays. In particular, we illustrate numerical results that highlight the spectral efficiency gains of RISs when their size is sufficiently large as compared with the wavelength of the radio waves. In addition, we discuss key open issues that need to be addressed for unlocking the potential benefits of RISs.Comment: Submitted for journal publication (revised version

    Time-resolved dynamics of electron wave packets in chaotic and regular quantum billiards with leads

    Full text link
    We perform numerical studies of the wave packet propagation through open quantum billiards whose classical counterparts exhibit regular and chaotic dynamics. We show that for t less or similar to tau (tau being the Heisenberg time), the features in the transmitted and reflected currents are directly related to specific classical trajectories connecting the billiard leads. In contrast, the long-time asymptotics of the wave packet dynamics is qualitatively different for classical and quantum billiards. In particularly, the decay of the quantum system obeys a power law that depends on the number of decay channels, and is not sensitive to the nature of classical dynamics (chaotic or regular).Comment: 5 pages, 4 figure

    Diffuse field cross-correlations: Scattering theory and electromagnetic experiments

    Get PDF
    The passive estimation of impulse responses from ambient noise correlations arouses increasing interest in seismology, acoustics, optics and electromagnetism. Assuming the equipartition of the noise field, the cross-correlation function measured with non-invasive receiving probes converges towards the difference of the causal and anti-causal Green’s functions. Here, we consider the case when the receiving field probes are antennas which are well coupled to a complex medium – a scenario of practical relevance in electromagnetism. We propose a general approach based on the scattering matrix formalism to explore the convergence of the cross-correlation function. The analytically derived theoretical results for chaotic systems are confirmed in microwave measurements within a mode-stirred reverberation chamber. This study provides new fundamental insights into the Green’s function retrieval technique and paves the way for a new technique to characterize electromagnetic antennas.French Agence Nationale de la Recherche (reference ANR-17- ASTR-0017); European Union (European Regional Development Fund (ERDF)), French region of Brittany and Rennes MĂ©tropole (CPER Project SOPHIE/STIC & Ondes); Institut Universitaire de France (IUF)

    Wireless coils based on resonant and nonresonant coupled-wire structure for small animal multinuclear imaging

    Get PDF
    Earlier work on RF metasurfaces for preclinical MRI has targeted applications such as whole‐body imaging and dual‐frequency coils. In these studies, a nonresonant loop was used to induce currents into a metasurface that was operated as a passive inductively powered resonator. However, as we show in this study, the strategy of using a resonant metasurface reduces the impact of the loop on the global performance of the assembled coil. To mitigate this deficiency, we developed a new approach that relies on the combination of a commercial surface coil and a coupled‐wire structure operated away from its resonance. This strategy enables the extension of the sensitive volume of the surface coil while maintaining its local high sensitivity without any hardware modification. A wireless coil based on a two parallel coupled‐wire structure was designed and electromagnetic field simulations were carried out with different levels of matching and coupling between both components of the coil. For experimental characterization, a prototype was built and tested at two frequencies, 300 MHz for 1H and 282.6 MHz for 19F at 7 T. Phantom and in vivo MRI experiments were conducted in different configurations to study signal and noise figures of the structure. The results showed that the proposed strategy improves the overall sensitive volume while simultaneously maintaining a high signal‐to‐noise ratio (SNR). Metasurfaces based on coupled wires are therefore shown here as promising and versatile elements in the MRI RF chain, as they allow customized adjustment of the sensitive volume as a function of SNR yield. In addition, they can be easily adapted to different Larmor frequencies without loss of performance
    • 

    corecore