81 research outputs found
A Near Infrared Laser Frequency Comb for High Precision Doppler Planet Surveys
We discuss the laser frequency comb as a near infrared astronomical
wavelength reference, and describe progress towards a near infrared laser
frequency comb at the National Institute of Standards and Technology and at the
University of Colorado where we are operating a laser frequency comb suitable
for use with a high resolution H band astronomical spectrograph.Comment: 8 pages, 5 figures. Conference Proceedings, New Technologies for
Probing the Diversity of Brown Dwarfs and Exoplanets, Shanghai, China, 19-24
July, 2009. Submitted to Eur. Phys. J. Conference
Demonstration of a Near-IR Laser Comb for Precision Radial Velocity Measurements in Astronomy
We describe a successful effort to produce a laser comb around 1.55 m in
the astronomical H band using a method based on a line-referenced,
electro-optical-modulation frequency comb. We discuss the experimental setup,
laboratory results, and proof of concept demonstrations at the NASA Infrared
Telescope Facility (IRTF) and the Keck-II telescope. The laser comb has a
demonstrated stability of 200 kHz, corresponding to a Doppler precision of
~0.3 m/s. This technology, when coupled with a high spectral resolution
spectrograph, offers the promise of 1 m/s radial velocity precision suitable
for the detection of Earth-sized planets in the habitable zones of cool M-type
stars
Coherent ultra-violet to near-infrared generation in silica ridge waveguides
Short duration, intense pulses of light can experience dramatic spectral broadening when propagating through lengths of optical fibre. This continuum generation process is caused by a combination of nonlinear optical effects including the formation of dispersive waves. Optical analogues of Cherenkov radiation, these waves allow a pulse to radiate power into a distant spectral region. In this work, efficient and coherent dispersive wave generation of visible to ultraviolet light is demonstrated in silica waveguides on a silicon chip. Unlike fibre broadeners, the arrays provide a wide range of emission wavelength choices on a single, compact chip. This new capability is used to simplify offset frequency measurements of a mode-locked frequency comb. The arrays can also enable mode-locked lasers to attain unprecedented tunable spectral reach for spectroscopy, bioimaging, tomography and metrology
Garcinolic Acid Distinguishes Between GACKIX Domains and Modulates Interaction Networks
Natural products are often uniquely suited to modulate protein-protein interactions (PPIs) due to their architectural and functional group complexity relative to synthetic molecules. Here we demonstrate that the natural product garcinolic acid allosterically blocks the CBP/p300 KIX PPI network and displays excellent selectivity over related GACKIX motifs. It does so via a strong interaction (KD 1 μM) with a non-canonical binding site containing a structurally dynamic loop in CBP/p300 KIX. Garcinolic acid engages full-length CBP in the context of the proteome and in doing so effectively inhibits KIX-dependent transcription in a leukemia model. As the most potent small-molecule KIX inhibitor yet reported, garcinolic acid represents an important step forward in the therapeutic targeting of CBP/p300
Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy
An important technique for discovering and characterizing planets beyond our solar system relies upon measurement of weak Doppler shifts in the spectra of host stars induced by the influence of orbiting planets. A recent advance has been the introduction of optical frequency combs as frequency references. Frequency combs produce a series of equally spaced reference frequencies and they offer extreme accuracy and spectral grasp that can potentially revolutionize exoplanet detection. Here we demonstrate a laser frequency comb using an alternate comb generation method based on electro-optical modulation, with the comb centre wavelength stabilized to a molecular or atomic reference. In contrast to mode-locked combs, the line spacing is readily resolvable using typical astronomical grating spectrographs. Built using commercial off-the-shelf components, the instrument is relatively simple and reliable. Proof of concept experiments operated at near-infrared wavelengths were carried out at the NASA Infrared Telescope Facility and the Keck-II telescope
ROPS: A New Search for Habitable Earths in the Southern Sky
We present the first results from our Red Optical Planet Survey (ROPS) to
search for low mass planets orbiting late type dwarfs (M5.5V - M9V) in their
habitable zones (HZ). Our observations, with the red arm of the MIKE
spectrograph (0.5 - 0.9 microns) at the 6.5 m Magellan Clay telescope at Las
Campanas Observatory indicate that >= 92 per cent of the flux lies beyond 0.7
microns. We use a novel approach that is essentially a hybrid of the
simultaneous iodine and ThAr methods for determining precision radial
velocities. We apply least squares deconvolution to obtain a single high S/N
ratio stellar line for each spectrum and cross correlate against the
simultaneously observed telluric line profile, which we derive in the same way.
Utilising the 0.62 - 0.90 micron region, we have achieved an r.m.s. precision
of 10 m/s for an M5.5V spectral type star with spectral S/N ~160 on 5 minute
timescales. By M8V spectral type, a precision of ~30 m/s at S/N = 25 is
suggested, although more observations are needed. An assessment of our errors
and scatter in the radial velocity points hints at the presence of stellar
radial velocity variations. Of our sample of 7 stars, 2 show radial velocity
signals at 6-sigma and 10-sigma of the cross correlation uncertainties. If the
signals are planetary in origin, our findings are consistent with estimates of
Neptune mass planets that predict a frequency of 13 - 27 per cent for early M
dwarfs.Our current analysis indicates the we can achieve a sensitivity that is
equivalent to the amplitude induced by a 6 M_Earth planet orbiting in the
habitable zone. Based on simulations, we estimate that <10 M_Earth habitable
zone planets will be detected in a new stellar mass regime, with <=20 epochs of
observations.Comment: MNRAS accepted: 14 pages, 8 figures, 3 table
An Integrated-Photonics Optical-Frequency Synthesizer
Integrated-photonics microchips now enable a range of advanced
functionalities for high-coherence applications such as data transmission,
highly optimized physical sensors, and harnessing quantum states, but with
cost, efficiency, and portability much beyond tabletop experiments. Through
high-volume semiconductor processing built around advanced materials there
exists an opportunity for integrated devices to impact applications cutting
across disciplines of basic science and technology. Here we show how to
synthesize the absolute frequency of a lightwave signal, using integrated
photonics to implement lasers, system interconnects, and nonlinear frequency
comb generation. The laser frequency output of our synthesizer is programmed by
a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and
traceability to the SI second. This is accomplished with a heterogeneously
integrated III/V-Si tunable laser, which is guided by dual
dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through
out-of-loop measurements of the phase-coherent, microwave-to-optical link, we
verify that the fractional-frequency instability of the integrated photonics
synthesizer matches the reference-clock instability for a 1
second acquisition, and constrain any synthesis error to while
stepping the synthesizer across the telecommunication C band. Any application
of an optical frequency source would be enabled by the precision optical
synthesis presented here. Building on the ubiquitous capability in the
microwave domain, our results demonstrate a first path to synthesis with
integrated photonics, leveraging low-cost, low-power, and compact features that
will be critical for its widespread use.Comment: 10 pages, 6 figure
Stellar Spectroscopy in the Near-infrared with a Laser Frequency Comb
The discovery and characterization of exoplanets around nearby stars is
driven by profound scientific questions about the uniqueness of Earth and our
Solar System, and the conditions under which life could exist elsewhere in our
Galaxy. Doppler spectroscopy, or the radial velocity (RV) technique, has been
used extensively to identify hundreds of exoplanets, but with notable
challenges in detecting terrestrial mass planets orbiting within habitable
zones. We describe infrared RV spectroscopy at the 10 m Hobby-Eberly telescope
that leverages a 30 GHz electro-optic laser frequency comb with nanophotonic
supercontinuum to calibrate the Habitable Zone Planet Finder spectrograph.
Demonstrated instrument precision <10 cm/s and stellar RVs approaching 1 m/s
open the path to discovery and confirmation of habitable zone planets around
M-dwarfs, the most ubiquitous type of stars in our Galaxy
Open-path dual-comb spectroscopy of methane and VOC emissions from an unconventional oil well development in Northern Colorado
We present results from a field study monitoring methane and volatile organic compound emissions near an unconventional oil well development in Northern Colorado from September 2019 to May 2020 using a mid-infrared dual-comb spectrometer. This instrument allowed quantification of methane, ethane, and propane in a single measurement with high time resolution and integrated path sampling. Using ethane and propane as tracer gases for methane from oil and gas activity, we observed emissions during the drilling, hydraulic fracturing, millout, and flowback phases of well development. Large emissions were seen in drilling and millout phases and emissions decreased to background levels during the flowback phase. Ethane/methane and propane/methane ratios varied widely throughout the observations
Wnt Signalling Pathway Parameters for Mammalian Cells
Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model
- …