11,547 research outputs found

    VHE gamma ray absorption by galactic interstellar radiation field

    Full text link
    Adopting a recent calculation of the Galactic interstellar radiation field, we calculate the attenuation of the very high energy gamma rays from the Galactic sources. The infra-red radiation background near the Galactic Center is very intense due to the new calculation and our result shows that a cutoff of high energy gamma ray spectrum begins at about 20 TeV and reaches about 10% for 50 TeV gamma rays.Comment: 6 pages, 1 figure, figure is changed, conclusion not change

    Suggestions for solution space exploration in the early stage of architectural design based on a literature review

    Get PDF
    Early design decisions have higher potential to influence building performance compared with the decisions made at later design stages. Performance simulation and optimization algorithms have been integrated to assist early design in reducing carbon emissions, improving indoor thermal comfort, etc. However, early decision making within a limited time frame is still challenging due to the large number of design options, the lack of decision-making guidance, and the trade-offs among various requirements. Selecting appropriate methods to explore design space is the key to find an ideal solution. This paper reviewed the challenges and identified the key questions to access the ability of existing decision-making methods to cope with different challenges. It is concluded that the interactive exploration of design space could be more effective and efficient by (1) combining the surrogate models and the automated optimization algorithms to improve the efficiency of the building performance calculation and the optimal design space position; and by (2) extending the optimal design space to increase the solution diversity, and (3) filtering the near optimal design space with consideration of the stakeholders\u27 preferences and values. Further integration of tools for building performance simulation, diversity description and decision-making guidance is needed to support the decision -making process

    Multi-Level Cross Residual Network for Lung Nodule Classification.

    Full text link
    Computer-aided algorithm plays an important role in disease diagnosis through medical images. As one of the major cancers, lung cancer is commonly detected by computer tomography. To increase the survival rate of lung cancer patients, an early-stage diagnosis is necessary. In this paper, we propose a new structure, multi-level cross residual convolutional neural network (ML-xResNet), to classify the different types of lung nodule malignancies. ML-xResNet is constructed by three-level parallel ResNets with different convolution kernel sizes to extract multi-scale features of the inputs. Moreover, the residuals are connected not only with the current level but also with other levels in a crossover manner. To illustrate the performance of ML-xResNet, we apply the model to process ternary classification (benign, indeterminate, and malignant lung nodules) and binary classification (benign and malignant lung nodules) of lung nodules, respectively. Based on the experiment results, the proposed ML-xResNet achieves the best results of 85.88% accuracy for ternary classification and 92.19% accuracy for binary classification, without any additional handcrafted preprocessing algorithm

    Muon anomalous magnetic moment and lepton flavor violation in MSSM

    Full text link
    We give a thorough analysis of the correlation between the muon anomalous magnetic moment and the radiative lepton flavor violating (LFV) processes within the minimal supersymmetric standard model. We find that in the case when the slepton mass eigenstates are nearly degenerate, δaμ\delta a_\mu, coming from SUSY contributions, hardly depends on the lepton flavor mixing and, thus, there is no direct relation between δaμ\delta a_\mu and the LFV processes. On the contrary, if the first two generations' sleptons are much heavier than the 3rd one, i.e., in the effective SUSY scenario, the two quantities are closely related. In the latter scenario, the SUSY parameter space to account for the experimental δaμ\delta a_\mu is quite different from the case of no lepton flavor mixing. Especially, the Higgsino mass parameter μ\mu can be either positive or negative.Comment: 22 pages, 9 figures; Some discussions are modifie

    Split Two-Higgs-Doublet Model and Neutrino Condensation

    Full text link
    We split the two-Higgs-doublet model by assuming very different vevs for the two doublets: the vev is at weak scale (174 GeV) for the doublet \Phi_1 and at neutrino-mass scale (10^{-2} \sim 10^{-3} eV) for the doublet \Phi_2. \Phi_1 is responsible for giving masses to all fermions except neutrinos; while \Phi_2 is responsible for giving neutrino masses through its tiny vev without introducing see-saw mechanism. Among the predicted five physical scalars H, h, A^0 and H^{\pm}, the CP-even scalar h is as light as 10^{-2} \sim 10^{-3}eV while others are at weak scale. We identify h as the cosmic dark energy field and the other CP-even scalar H as the Standard Model Higgs boson; while the CP-odd A^0 and the charged H^{\pm} are the exotic scalars to be discovered at future colliders. Also we demonstrate a possible dynamical origin for the doublet \Phi_2 from neutrino condensation caused by some unknown dynamics.Comment: version in Europhys. Lett. (discussions added

    Full calculation of clumpiness boost factors for antimatter cosmic rays in the light of Lambda-CDM N-body simulation results

    Full text link
    Anti-proton and positron Galactic cosmic ray spectra are among the key targets for indirect detection of dark matter. The boost factors, corresponding to an enhancement of the signal and linked to the clumpiness properties of the dark matter distribution, have been taken as high as thousands in the past. The dramatic impact of these boost factors for indirect detection of antiparticles, for instance with the PAMELA satellite or the coming AMS-02 experiment, asks for their detailed calculation. We take into account the results of high resolution N-body dark matter simulations to calculate the most likely energy dependent boost factors linked to the cosmic ray propagation properties, for anti-protons and positrons. Starting from the mass and space distributions of sub-halos, the anti-proton and positron propagators are used to calculate the mean value and the variance of the boost factor for the primary fluxes. We take advantage of the statistical method introduced in Lavalle et al. (2007) and cross-check the results with Monte Carlo computations. By spanning some extreme configurations of sub-halo and propagation properties, we find that the average contribution of the clumps is negligible compared to that of the smooth dark matter component. Sub-halos do not lead to enhancement of the signals, unless they are taken with some extreme (unexpected) properties. This result is independent of the nature of the self-annihilating dark matter candidate considered, and provides precise estimates of the theoretical and the statistical uncertainties of the antimatter flux from dark matter substructures. Spectral distortions can still be expected in antimatter flux measurements, but scenarios invoking large and even mild clumpiness boost factors are strongly disfavoured by our analysis.Comment: Final version, matching the published one. 32 pages, 12 figure

    CP Asymmetry in Charged Higgs Decays in MSSM

    Get PDF
    We discuss and compare the charge-parity (CP) asymmetry in the charged Higgs boson decays H -> \bar{u}_i d_j for the second and third generation quarks in the minimal supersymmetric standard model. As part of the analysis, we derive some general analytical formulas for the imaginary parts of two-point and three-point scalar one-loop integrals and use them for calculating vectorial and tensorial type integrals needed for the problem under consideration. We find that, even though each decay mode has a potential to yield a CP asymmetry larger than 10%, further analysis based on the number of required charged Higgs events at colliders favors the \bar{t}b, \bar{c}b, and \bar{c}s channels, whose asymmetry could reach 10-15% in certain parts of the parameter space.Comment: 25 pages, 9 figures. Discussion about charged Higgs observability added, typos corrected, accepted for publication in PR

    Ages and Masses of 0.64 million Red Giant Branch stars from the LAMOST Galactic Spectroscopic Survey

    Full text link
    We present a catalog of stellar age and mass estimates for a sample of 640\,986 red giant branch (RGB) stars of the Galactic disk from the LAMOST Galactic Spectroscopic Survey (DR4). The RGB stars are distinguished from the red clump stars utilizing period spacing derived from the spectra with a machine learning method based on kernel principal component analysis (KPCA). Cross-validation suggests our method is capable of distinguishing RC from RGB stars with only 2 per cent contamination rate for stars with signal-to-noise ratio (SNR) higher than 50. The age and mass of these RGB stars are determined from their LAMOST spectra with KPCA method by taking the LAMOST - KeplerKepler giant stars having asteroseismic parameters and the LAMOST-TGAS sub-giant stars based on isochrones as training sets. Examinations suggest that the age and mass estimates of our RGB sample stars with SNR >> 30 have a median error of 30 per cent and 10 per cent, respectively. Stellar ages are found to exhibit positive vertical and negative radial gradients across the disk, and the age structure of the disk is strongly flared across the whole disk of 6<R<136<R<13\,kpc. The data set demonstrates good correlations among stellar age, [Fe/H] and [α\alpha/Fe]. There are two separate sequences in the [Fe/H] -- [α\alpha/Fe] plane: a high--α\alpha sequence with stars older than ∼\sim\,8\,Gyr and a low--α\alpha sequence composed of stars with ages covering the whole range of possible ages of stars. We also examine relations between age and kinematic parameters derived from the Gaia DR2 parallax and proper motions. Both the median value and dispersion of the orbital eccentricity are found to increase with age. The vertical angular momentum is found to fairly smoothly decrease with age from 2 to 12\,Gyr, with a rate of about −-50\,kpc\,km\,s−1^{-1}\,Gyr−1^{-1}. A full table of the catalog is public available online.Comment: 16 pages, 22 figures,accepted by MNRA
    • …
    corecore