383 research outputs found

    Particle Swarm Optimization and gravitational wave data analysis: Performance on a binary inspiral testbed

    Get PDF
    The detection and estimation of gravitational wave (GW) signals belonging to a parameterized family of waveforms requires, in general, the numerical maximization of a data-dependent function of the signal parameters. Due to noise in the data, the function to be maximized is often highly multi-modal with numerous local maxima. Searching for the global maximum then becomes computationally expensive, which in turn can limit the scientific scope of the search. Stochastic optimization is one possible approach to reducing computational costs in such applications. We report results from a first investigation of the Particle Swarm Optimization (PSO) method in this context. The method is applied to a testbed motivated by the problem of detection and estimation of a binary inspiral signal. Our results show that PSO works well in the presence of high multi-modality, making it a viable candidate method for further applications in GW data analysis.Comment: 13 pages, 5 figure

    Singular value decomposition applied to compact binary coalescence gravitational-wave signals

    Get PDF
    We investigate the application of the singular value decomposition to compact-binary, gravitational-wave data-analysis. We find that the truncated singular value decomposition reduces the number of filters required to analyze a given region of parameter space of compact binary coalescence waveforms by an order of magnitude with high reconstruction accuracy. We also compute an analytic expression for the expected signal-loss due to the singular value decomposition truncation.Comment: 4 figures, 6 page

    Practical Methods for Continuous Gravitational Wave Detection using Pulsar Timing Data

    Get PDF
    Gravitational Waves (GWs) are tiny ripples in the fabric of space-time predicted by Einstein's General Relativity. Pulsar timing arrays (PTAs) are well poised to detect low frequency (10910^{-9} -- 10710^{-7} Hz) GWs in the near future. There has been a significant amount of research into the detection of a stochastic background of GWs from supermassive black hole binaries (SMBHBs). Recent work has shown that single continuous sources standing out above the background may be detectable by PTAs operating at a sensitivity sufficient to detect the stochastic background. The most likely sources of continuous GWs in the pulsar timing frequency band are extremely massive and/or nearby SMBHBs. In this paper we present detection strategies including various forms of matched filtering and power spectral summing. We determine the efficacy and computational cost of such strategies. It is shown that it is computationally infeasible to use an optimal matched filter including the poorly constrained pulsar distances with a grid based method. We show that an Earth-term-matched filter constructed using only the correlated signal terms is both computationally viable and highly sensitive to GW signals. This technique is only a factor of two less sensitive than the computationally unrealizable optimal matched filter and a factor of two more sensitive than a power spectral summing technique. We further show that a pairwise matched filter, taking the pulsar distances into account is comparable to the optimal matched filter for the single template case and comparable to the Earth-term-matched filter for many search templates. Finally, using simulated data optimal quality, we place a theoretical minimum detectable strain amplitude of h>2×1015h>2\times 10^{-15} from continuous GWs at frequencies on the order 1/Tobs\sim1/T_{\rm obs}.Comment: submitted to Ap

    Learning about compact binary merger: the interplay between numerical relativity and gravitational-wave astronomy

    Get PDF
    Activities in data analysis and numerical simulation of gravitational waves have to date largely proceeded independently. In this work we study how waveforms obtained from numerical simulations could be effectively used within the data analysis effort to search for gravitational waves from black hole binaries. We propose measures to quantify the accuracy of numerical waveforms for the purpose of data analysis and study how sensitive the analysis is to errors in the waveforms. We estimate that ~100 templates (and ~10 simulations with different mass ratios) are needed to detect waves from non-spinning binary black holes with total masses in the range 100 Msun < M < 400 Msun using initial LIGO. Of course, many more simulation runs will be needed to confirm that the correct physics is captured in the numerical evolutions. From this perspective, we also discuss sources of systematic errors in numerical waveform extraction and provide order of magnitude estimates for the computational cost of simulations that could be used to estimate the cost of parameter space surveys. Finally, we discuss what information from near-future numerical simulations of compact binary systems would be most useful for enhancing the detectability of such events with contemporary gravitational wave detectors and emphasize the role of numerical simulations for the interpretation of eventual gravitational-wave observations.Comment: 19 pages, 12 figure

    Universal analytic properties of noise. Introducing the J-Matrix formalism

    Full text link
    We propose a new method in the spectral analysis of noisy time-series data for damped oscillators. From the Jacobi three terms recursive relation for the denominators of the Pad\'e Approximations built on the well-known Z-transform of an infinite time-series, we build an Hilbert space operator, a J-Operator, where each bound state (inside the unit circle in the complex plane) is simply associated to one damped oscillator while the continuous spectrum of the J-Operator, which lies on the unit circle itself, is shown to represent the noise. Signal and noise are thus clearly separated in the complex plane. For a finite time series of length 2N, the J-operator is replaced by a finite order J-Matrix J_N, having N eigenvalues which are time reversal covariant. Different classes of input noise, such as blank (white and uniform), Gaussian and pink, are discussed in detail, the J-Matrix formalism allowing us to efficiently calculate hundreds of poles of the Z-transform. Evidence of a universal behaviour in the final statistical distribution of the associated poles and zeros of the Z-transform is shown. In particular the poles and zeros tend, when the length of the time series goes to infinity, to a uniform angular distribution on the unit circle. Therefore at finite order, the roots of unity in the complex plane appear to be noise attractors. We show that the Z-transform presents the exceptional feature of allowing lossless undersampling and how to make use of this property. A few basic examples are given to suggest the power of the proposed method.Comment: 14 pages, 8 figure

    LISA Data Analysis using MCMC methods

    Full text link
    The Laser Interferometer Space Antenna (LISA) is expected to simultaneously detect many thousands of low frequency gravitational wave signals. This presents a data analysis challenge that is very different to the one encountered in ground based gravitational wave astronomy. LISA data analysis requires the identification of individual signals from a data stream containing an unknown number of overlapping signals. Because of the signal overlaps, a global fit to all the signals has to be performed in order to avoid biasing the solution. However, performing such a global fit requires the exploration of an enormous parameter space with a dimension upwards of 50,000. Markov Chain Monte Carlo (MCMC) methods offer a very promising solution to the LISA data analysis problem. MCMC algorithms are able to efficiently explore large parameter spaces, simultaneously providing parameter estimates, error analyses and even model selection. Here we present the first application of MCMC methods to simulated LISA data and demonstrate the great potential of the MCMC approach. Our implementation uses a generalized F-statistic to evaluate the likelihoods, and simulated annealing to speed convergence of the Markov chains. As a final step we super-cool the chains to extract maximum likelihood estimates, and estimates of the Bayes factors for competing models. We find that the MCMC approach is able to correctly identify the number of signals present, extract the source parameters, and return error estimates consistent with Fisher information matrix predictions.Comment: 14 pages, 7 figure

    Inspiralling compact binaries in quasi-elliptical orbits: The complete third post-Newtonian energy flux

    Full text link
    The instantaneous contributions to the 3PN gravitational wave luminosity from the inspiral phase of a binary system of compact objects moving in a quasi elliptical orbit is computed using the multipolar post-Minkowskian wave generation formalism. The necessary inputs for this calculation include the 3PN accurate mass quadrupole moment for general orbits and the mass octupole and current quadrupole moments at 2PN. Using the recently obtained 3PN quasi-Keplerian representation of elliptical orbits the flux is averaged over the binary's orbit. Supplementing this by the important hereditary contributions arising from tails, tails-of-tails and tails squared terms calculated in a previous paper, the complete 3PN energy flux is obtained. The final result presented in this paper would be needed for the construction of ready-to-use templates for binaries moving on non-circular orbits, a plausible class of sources not only for the space based detectors like LISA but also for the ground based ones.Comment: 40 pages. Minor changes in text throughout. Minor typos in Eqs. (3.3b), (7.7f), (8.19d) and (8.20) corrected. Matches the published versio

    When the Earth trembles in the americas: the experience of haiti and chile 2010.

    Get PDF
    The response of the nephrological community to the Haiti and Chile earthquakes which occurred in the first months of 2010 is described. In Haiti, renal support was organized by the Renal Disaster Relief Task Force (RDRTF) of the International Society of Nephrology (ISN) in close collaboration with Médecins Sans Frontières (MSF), and covered both patients with acute kidney injury (AKI) and patients with chronic kidney disease (CKD). The majority of AKI patients (19/27) suffered from crush syndrome and recovered their kidney function. The remaining 8 patients with AKI showed acute-to-chronic renal failure with very low recovery rates. The intervention of the RDRTF-ISN involved 25 volunteers of 9 nationalities, lasted exactly 2 months, and was characterized by major organizational difficulties and problems to create awareness among other rescue teams regarding the availability of dialysis possibilities. Part of the Haitian patients with AKI reached the Dominican Republic (DR) and received their therapy there. The nephrological community in the DR was able to cope with this extra patient load. In both Haiti and the DR, dialysis treatment was able to be prevented in at least 40 patients by screening and adequate fluid administration. Since laboratory facilities were destroyed in Port-au-Prince and were thus lacking during the first weeks of the intervention, the use from the very beginning on of a point-of-care device (i-STAT®) was very efficient for the detection of aberrant kidney function and electrolyte parameters. In Chile, nephrological problems were essentially related to difficulties delivering dialysis treatment to CKD patients, due to the damage to several units. This necessitated the reallocation of patients and the adaptation of their schedules. The problems could be handled by the local nephrologists. These observations illustrate that local and international preparedness might be life-saving if renal problems occur in earthquake circumstances

    Gravitational radiation in d>4 from effective field theory

    Full text link
    Some years ago, a new powerful technique, known as the Classical Effective Field Theory, was proposed to describe classical phenomena in gravitational systems. Here we show how this approach can be useful to investigate theoretically important issues, such as gravitational radiation in any spacetime dimension. In particular, we derive for the first time the Einstein-Infeld-Hoffman Lagrangian and we compute Einstein's quadrupole formula for any number of flat spacetime dimensions.Comment: 32 pages, 10 figures. v2: Factor in eq. (3.11) fixed. References adde

    A coherent triggered search for single spin compact binary coalescences in gravitational wave data

    Get PDF
    In this paper we present a method for conducting a coherent search for single spin compact binary coalescences in gravitational wave data and compare this search to the existing coincidence method for single spin searches. We propose a method to characterize the regions of the parameter space where the single spin search, both coincident and coherent, will increase detection efficiency over the existing non-precessing search. We also show example results of the coherent search on a stretch of data from LIGO's fourth science run but note that a set of signal based vetoes will be needed before this search can be run to try to make detections.Comment: 14 pages, 4 figure
    corecore