1,429 research outputs found

    Managing bereavement in the classroom: a conspiracy of silence?

    Get PDF
    The ways in which teachers in British schools manage bereaved children are under-reported. This article reports the impact of students' bereavement and their subsequent management in primary and secondary school classrooms in Southeast London. Thirteen school staff working in inner-city schools took part in in-depth interviews that focused on the impact of bereaved children on the school and how teachers responded to these children. All respondents had previously had contact with a local child bereavement service that aims to provide support, advice, and consultancy to children, their parents, and teachers. Interviews were audiotaped, transcribed verbatim, and analyzed using ATLAS-ti. Three main themes were identified from analysis of interview data. Firstly, British society, culture, local communities, and the family were significant influences in these teachers' involvement with bereaved students. Secondly, school staff managed bereaved students through contact with other adults and using practical classroom measures such as "time out" cards and contact books. Lastly, teachers felt they had to be strong, even when they were distressed. Surprise was expressed at the mature reaction of secondary school students to deaths of others. The article recommends that future research needs to concentrate on finding the most effective way of supporting routinely bereaved children, their families, and teachers

    Validation of northern latitude Tropospheric Emission Spectrometer stare ozone profiles with ARC-IONS sondes during ARCTAS: sensitivity, bias and error analysis

    Get PDF
    We compare Tropospheric Emission Spectrometer (TES) versions 3 and 4, V003 and V004, respectively, nadir-stare ozone profiles with ozonesonde profiles from the Arctic Intensive Ozonesonde Network Study (ARCIONS, http://croc.gsfc.nasa.gov/arcions/ during the Arctic Research on the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field mission. The ozonesonde data are from launches timed to match Aura's overpass, where 11 coincidences spanned 44° N to 71° N from April to July 2008. Using the TES "stare" observation mode, 32 observations are taken over each coincidental ozonesonde launch. By effectively sampling the same air mass 32 times, comparisons are made between the empirically-calculated random errors to the expected random errors from measurement noise, temperature and interfering species, such as water. This study represents the first validation of high latitude (>70°) TES ozone. We find that the calculated errors are consistent with the actual errors with a similar vertical distribution that varies between 5% and 20% for V003 and V004 TES data. In general, TES ozone profiles are positively biased (by less than 15%) from the surface to the upper-troposphere (~1000 to 100 hPa) and negatively biased (by less than 20%) from the upper-troposphere to the lower-stratosphere (100 to 30 hPa) when compared to the ozonesonde data. Lastly, for V003 and V004 TES data between 44° N and 71° N there is variability in the mean biases (from −14 to +15%), mean theoretical errors (from 6 to 13%), and mean random errors (from 9 to 19%)

    Electrostatic Patch Effect in Cylindrical Geometry. III. Torques

    Full text link
    We continue to study the effect of uneven voltage distribution on two close cylindrical conductors with parallel axes started in our papers [1] and [2], now to find the electrostatic torques. We calculate the electrostatic potential and energy to lowest order in the gap to cylinder radius ratio for an arbitrary relative rotation of the cylinders about their symmetry axis. By energy conservation, the axial torque, independent of the uniform voltage difference, is found as a derivative of the energy in the rotation angle. We also derive both the axial and slanting torques by the surface integration method: the torque vector is the integral over the cylinder surface of the cross product of the electrostatic force on a surface element and its position vector. The slanting torque consists of two parts: one coming from the interaction between the patch and the uniform voltages, and the other due to the patch interaction. General properties of the torques are described. A convenient model of a localized patch suggested in [2] is used to calculate the torques explicitly in terms of elementary functions. Based on this, we analyze in detail patch interaction for one pair of patches, namely, the torque dependence on the patch parameters (width and strength) and their mutual positions. The effect of the axial torque is then studied for the experimental conditions of the STEP mission.Comment: 28 pages, 6 Figures. Submitted to Classical Quantum Gravit

    Dynamical response of the "GGG" rotor to test the Equivalence Principle: theory, simulation and experiment. Part I: the normal modes

    Get PDF
    Recent theoretical work suggests that violation of the Equivalence Principle might be revealed in a measurement of the fractional differential acceleration η\eta between two test bodies -of different composition, falling in the gravitational field of a source mass- if the measurement is made to the level of η1013\eta\simeq 10^{-13} or better. This being within the reach of ground based experiments, gives them a new impetus. However, while slowly rotating torsion balances in ground laboratories are close to reaching this level, only an experiment performed in low orbit around the Earth is likely to provide a much better accuracy. We report on the progress made with the "Galileo Galilei on the Ground" (GGG) experiment, which aims to compete with torsion balances using an instrument design also capable of being converted into a much higher sensitivity space test. In the present and following paper (Part I and Part II), we demonstrate that the dynamical response of the GGG differential accelerometer set into supercritical rotation -in particular its normal modes (Part I) and rejection of common mode effects (Part II)- can be predicted by means of a simple but effective model that embodies all the relevant physics. Analytical solutions are obtained under special limits, which provide the theoretical understanding. A simulation environment is set up, obtaining quantitative agreement with the available experimental data on the frequencies of the normal modes, and on the whirling behavior. This is a needed and reliable tool for controlling and separating perturbative effects from the expected signal, as well as for planning the optimization of the apparatus.Comment: Accepted for publication by "Review of Scientific Instruments" on Jan 16, 2006. 16 2-column pages, 9 figure

    Projections of epidemic transmission and estimation of vaccination impact during an ongoing Ebola virus disease outbreak in Northeastern Democratic Republic of Congo, as of Feb. 25, 2019.

    Get PDF
    BackgroundAs of February 25, 2019, 875 cases of Ebola virus disease (EVD) were reported in North Kivu and Ituri Provinces, Democratic Republic of Congo. Since the beginning of October 2018, the outbreak has largely shifted into regions in which active armed conflict has occurred, and in which EVD cases and their contacts have been difficult for health workers to reach. We used available data on the current outbreak, with case-count time series from prior outbreaks, to project the short-term and long-term course of the outbreak.MethodsFor short- and long-term projections, we modeled Ebola virus transmission using a stochastic branching process that assumes gradually quenching transmission rates estimated from past EVD outbreaks, with outbreak trajectories conditioned on agreement with the course of the current outbreak, and with multiple levels of vaccination coverage. We used two regression models to estimate similar projection periods. Short- and long-term projections were estimated using negative binomial autoregression and Theil-Sen regression, respectively. We also used Gott's rule to estimate a baseline minimum-information projection. We then constructed an ensemble of forecasts to be compared and recorded for future evaluation against final outcomes. From August 20, 2018 to February 25, 2019, short-term model projections were validated against known case counts.ResultsDuring validation of short-term projections, from one week to four weeks, we found models consistently scored higher on shorter-term forecasts. Based on case counts as of February 25, the stochastic model projected a median case count of 933 cases by February 18 (95% prediction interval: 872-1054) and 955 cases by March 4 (95% prediction interval: 874-1105), while the auto-regression model projects median case counts of 889 (95% prediction interval: 876-933) and 898 (95% prediction interval: 877-983) cases for those dates, respectively. Projected median final counts range from 953 to 1,749. Although the outbreak is already larger than all past Ebola outbreaks other than the 2013-2016 outbreak of over 26,000 cases, our models do not project that it is likely to grow to that scale. The stochastic model estimates that vaccination coverage in this outbreak is lower than reported in its trial setting in Sierra Leone.ConclusionsOur projections are concentrated in a range up to about 300 cases beyond those already reported. While a catastrophic outbreak is not projected, it is not ruled out, and prevention and vigilance are warranted. Prospective validation of our models in real time allowed us to generate more accurate short-term forecasts, and this process may prove useful for future real-time short-term forecasting. We estimate that transmission rates are higher than would be seen under target levels of 62% coverage due to contact tracing and vaccination, and this model estimate may offer a surrogate indicator for the outbreak response challenges

    A brief introduction to recent developments in population-based structural health monitoring

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.One of the main problems in data-based Structural Health Monitoring (SHM), is the scarcity of measured data corresponding to damage states in the structures of interest. One approach to solving this problem is to develop methods of transferring health inferences and information between structures in an identified population—Population-based SHM (PBSHM). In the case of homogenous populations (sets of nominally-identical structures, like in a wind farm), the idea of the form has been proposed which encodes information about the ideal or typical structure together with information about variations across the population. In the case of sets of disparate structures—heterogeneous populations—transfer learning appears to be a powerful tool for sharing inferences, and is also applicable in the homogenous case. In order to assess the likelihood of transference being meaningful, it has proved useful to develop an abstract representation framework for spaces of structures, so that similarities between structures can formally be assessed; this framework exploits tools from graph theory. The current paper discusses all of these very recent developments and provides illustrative examplesEngineering and Physical Sciences Research Council (EPSRC

    Projections of Ebola outbreak size and duration with and without vaccine use in Équateur, Democratic Republic of Congo, as of May 27, 2018.

    Get PDF
    As of May 27, 2018, 6 suspected, 13 probable and 35 confirmed cases of Ebola virus disease (EVD) had been reported in Équateur Province, Democratic Republic of Congo. We used reported case counts and time series from prior outbreaks to estimate the total outbreak size and duration with and without vaccine use. We modeled Ebola virus transmission using a stochastic branching process model that included reproduction numbers from past Ebola outbreaks and a particle filtering method to generate a probabilistic projection of the outbreak size and duration conditioned on its reported trajectory to date; modeled using high (62%), low (44%), and zero (0%) estimates of vaccination coverage (after deployment). Additionally, we used the time series for 18 prior Ebola outbreaks from 1976 to 2016 to parameterize the Thiel-Sen regression model predicting the outbreak size from the number of observed cases from April 4 to May 27. We used these techniques on probable and confirmed case counts with and without inclusion of suspected cases. Probabilistic projections were scored against the actual outbreak size of 54 EVD cases, using a log-likelihood score. With the stochastic model, using high, low, and zero estimates of vaccination coverage, the median outbreak sizes for probable and confirmed cases were 82 cases (95% prediction interval [PI]: 55, 156), 104 cases (95% PI: 58, 271), and 213 cases (95% PI: 64, 1450), respectively. With the Thiel-Sen regression model, the median outbreak size was estimated to be 65.0 probable and confirmed cases (95% PI: 48.8, 119.7). Among our three mathematical models, the stochastic model with suspected cases and high vaccine coverage predicted total outbreak sizes closest to the true outcome. Relatively simple mathematical models updated in real time may inform outbreak response teams with projections of total outbreak size and duration
    corecore