600 research outputs found

    New high-pressure phase and equation of state of Ce2Zr2O8

    Full text link
    In this paper we report a new high-pressure rhombohedral phase of Ce2Zr2O8 observed from high-pressure angle-dispersive x-ray diffraction and Raman spectroscopy studies up to nearly 12 GPa. The ambient-pressure cubic phase of Ce2Zr2O8 transforms to a rhombohedral structure beyond 5 GPa with a feeble distortion in the lattice. Pressure evolution of unit-cell volume showed a change in compressibility above 5 GPa. The unit-cell parameters of the high-pressure rhombohedral phase at 12.1 GPa are ah = 14.6791(3) {\AA}, ch = 17.9421(5) {\AA}, V = 3348.1(1) {\AA}3. The structure relation between the parent cubic (P2_13) and rhombohedral (P3_2) phases were obtained by group-subgroup relations. All the Raman modes of the cubic phase showed linear evolution with pressure with the hardest one at 197 cm-1. Some Raman modes of the high-pressure phase have a non-linear evolution with pressure and softening of one low-frequency mode with pressure is found. The compressibility, equation of state, and pressure coefficients of Raman modes of Ce2Zr2O8 are also reported.Comment: 33 pages, 8 figures, 6 table

    Properties of the ferrimagnetic double-perovskite A_{2}FeReO_{6} (A=Ba and Ca)

    Get PDF
    Ceramics of A_{2}FeReO_{6} double-perovskite have been prepared and studied for A=Ba and Ca. Ba_{2}FeReO_{6} has a cubic structure (Fm3m) with aa\approx 8.0854(1) \AA whereas Ca_{2}FeReO_{6} has a distorted monoclinic symmetry with a5.396(1)A˚,b5.522(1)A˚,c7.688(2)A˚a\approx 5.396(1) \AA, b\approx 5.522(1) \AA, c\approx 7.688(2) \AA and β=90.4(P21/n)\beta =90.4^{\circ} (P21/n). The barium compound is metallic from 5 K to 385 K, i.e. no metal-insulator transition has been seen up to 385 K, and the calcium compound is semiconducting from 5 K to 385 K. Magnetization measurements show a ferrimagnetic behavior for both materials, with T_{c}=315 K for Ba_{2}FeReO_{6} and above 385 K for Ca_{2}FeReO_{6}. A specific heat measurement on the barium compound gave an electron density of states at the Fermi level, N(E_{F}) equal to 6.1×1024eV1mole1\times 10^{24} eV^{-1}mole^{-1}. At 5 K, we observed a negative magnetoresistance of 10 % in a magnetic field of 5 T, but only for Ba_{2}FeReO_{6}. Electrical, thermal and magnetic properties are discussed and compared to the analogous compounds Sr_{2}Fe(Mo,Re)O_{6}.Comment: 5 pages REVTeX, 7 figures included, submitted to PR

    Metallic and nonmetallic double perovskites: A case study of A2_2FeReO6_6 (A= Ca, Sr, Ba)

    Full text link
    We have investigated the structure and electronic properties of ferrimagnetic double perovskites, A2FeReO6 (A= Ca, Sr, Ba). The A=Ba phase is cubic (Fm3m) and metallic, while the A=Ca phase is monoclinic (P21/n) and nonmetallic. 57Fe Mossbauer spectroscopy shows that iron is present mainly in the high-spin (S=5/2) Fe3+ state in the Ca compound, while it occurs in an intermediate state between high-spin Fe2+ and Fe3+ in the Ba compound. It is argued that a direct Re t2g - Re t2g interaction is the main cause for the metallic character of the Ba compound; the high covalency of Ca-O bonds and the monoclinic distortion (which lifts the degeneracy of t2g states) seem to disrupt the Re-Re interaction in the case of the Ca compound, making it non-metallic for the same electron count.Comment: 1 eps fil

    Superconducting to spin glass state transformation in {\ss}-pyrochlore KxOs2O6

    Full text link
    {\ss}-pyrochore KOs2O6, which shows superconductivity below ~ 9.7K, has been converted into KxOs2O6 (x < 2/3 - 1/2) electrochemically to show spin glass-like behavior below ~ 6.1K. Room temperature sample surface potential versus charge transfer scan indicates that there are at least two two-phase regions for x between 1 and 0.5. Rattling model of superconductivity for the title compound has been examined using electrochemical potassium de-intercalation. The significant reduction of superconducting volume fraction due to minor potassium reduction suggests the importance of defect and phase coherence in the rattling model. Magnetic susceptibility, resistivity, and specific heat measurement results have been compared between the superconducting and spin glass-like samples.Comment: 8 pages, 7 figures, 1 tabl

    Anomalous magnetic phase in an undistorted pyrochlore oxide Cd2Os2O7 induced by geometrical frustration

    Full text link
    We report on the muon spin rotation/relaxation study of a pyrochlore oxide, Cd2Os2O7, which exhibits a metal-insulator (MI) transition at T_{MI}~225 K without structural phase transition. It reveals strong spin fluctuation (>10^8/s) below the MI transition, suggesting a predominant role of geometrical spin frustration amongst Os^{5+} ions. Meanwhile, upon further cooling, a static spin density wave discontinuously develops below T_{SDW}~150 K. These observations strongly suggest the occurrence of an anomalous magnetic transition and associated change in the local spin dynamics in undistorted pyrochlore antiferromagnet.Comment: 5 pages, 4 figure

    Test and Analysis of a Buckling-Critical Large-Scale Sandwich Composite Cylinder

    Get PDF
    Structural stability is an important design consideration for launch-vehicle shell structures and it is well known that the buckling response of such shell structures can be very sensitive to small geometric imperfections. As part of an effort to develop new buckling design guidelines for sandwich composite cylindrical shells, an 8-ft-diameter honeycomb-core sandwich composite cylinder was tested under pure axial compression to failure. The results from this test are compared with finite-element-analysis predictions and overall agreement was very good. In particular, the predicted buckling load was within 1% of the test and the character of the response matched well. However, it was found that the agreement could be improved by including composite material nonlinearity in the analysis, and that the predicted buckling initiation site was sensitive to the addition of small bending loads to the primary axial load in analyses

    Theory of Transition Temperature of Magnetic Double Perovskites

    Full text link
    We formulate a theory of double perovskite coumpounds such as Sr2_2FeReO6_6 and Sr2_2FeMoO6_6 which have attracted recent attention for their possible uses as spin valves and sources of spin polarized electrons. We solve the theory in the dynamical mean field approximation to find the magnetic transition temperature TcT_c. We find that TcT_c is determined by a subtle interplay between carrier density and the Fe-Mo/Re site energy difference, and that the non-Fe same-sublattice hopping acts to reduce TcT_c. Our results suggest that presently existing materials do not optimize TcT_c

    Structural Order Parameter in the Pyrochlore Superconductor Cd2Re2O7

    Full text link
    It is shown that both structural phase transitions in Cd2Re2O7, which occur at T_{s1}=200 K and T_{s2}=120 K, are due to an instability of the Re tetrahedral network with respect to the same doubly degenerate long-wavelength phonon mode. The primary structural order parameter transforms according to the irreducible representation E_u of the point group O_h. We argue that the transition at T_{s1} may be of second order, in accordance with experimental data. We obtain the phase diagram in the space of phenomenological parameters and propose a thermodynamic path that Cd2Re2O7 follows upon cooling. Couplings of the itinerant electronic system and localized spin states in pyrochlores and spinels to atomic displacements are discussed.Comment: 5 pages. Submitted to J. Phys. Soc. Jpn. Best quality figures are available at http://www.physics.mun.ca/~isergien/pubs.htm

    Searching for the Slater Transition in the Pyrochlore Cd2_{2}Os2_{2}O7_{7} with Infrared Spectroscopy

    Full text link
    Infrared reflectance measurements were made on the single crystal pyrochlore Cd2_{2}Os2_{2}O7_{7} in order to examine the transformations of the electronic structure and crystal lattice across the boundary of the metal insulator transition at TMIT=226KT_{MIT}=226K. All predicted IR active phonons are observed in the conductivity over all temperatures and the oscillator strength is found to be temperature independent. These results indicate that charge ordering plays only a minor role in the MIT and that the transition is strictly electronic in nature. The conductivity shows the clear opening of a gap with 2Δ=5.2kBTMIT2\Delta=5.2k_{B}T_{MIT}. The gap opens continuously, with a temperature dependence similar to that of BCS superconductors, and the gap edge having a distinct σ(ω)ω1/2\sigma(\omega)\thicksim\omega^{1/2} dependence. All of these observables support the suggestion of a Slater transition in Cd2_{2}% Os2_{2}O7_{7}.Comment: 4 pages, 4 figure
    corecore