930 research outputs found
3-manifolds which are spacelike slices of flat spacetimes
We continue work initiated in a 1990 preprint of Mess giving a geometric
parameterization of the moduli space of classical solutions to Einstein's
equations in 2+1 dimensions with cosmological constant 0 or -1 (the case +1 has
been worked out in the interim by the present author). In this paper we make a
first step toward the 3+1-dimensional case by determining exactly which closed
3-manifolds M^3 arise as spacelike slices of flat spacetimes, and by finding
all possible holonomy homomorphisms pi_1(M^3) to ISO(3,1).Comment: 10 page
Efficient Behavior of Small-World Networks
We introduce the concept of efficiency of a network, measuring how
efficiently it exchanges information. By using this simple measure small-world
networks are seen as systems that are both globally and locally efficient. This
allows to give a clear physical meaning to the concept of small-world, and also
to perform a precise quantitative a nalysis of both weighted and unweighted
networks. We study neural networks and man-made communication and
transportation systems and we show that the underlying general principle of
their construction is in fact a small-world principle of high efficiency.Comment: 1 figure, 2 tables. Revised version. Accepted for publication in
Phys. Rev. Let
Modularity produces small-world networks with dynamical time-scale separation
The functional consequences of local and global dynamics can be very
different in natural systems. Many such systems have a network description that
exhibits strong local clustering as well as high communication efficiency,
often termed as small-world networks (SWN). We show that modular organization
in otherwise random networks generically give rise to SWN, with a
characteristic time-scale separation between fast intra-modular and slow
inter-modular processes. The universality of this dynamical signature, that
distinguishes modular networks from earlier models of SWN, is demonstrated by
processes as different as spin-ordering, synchronization and diffusion.Comment: 6 pages, 7 figures. Published version, Results and figures of
additional dynamics have been include
Nonlocal mechanism for cluster synchronization in neural circuits
The interplay between the topology of cortical circuits and synchronized
activity modes in distinct cortical areas is a key enigma in neuroscience. We
present a new nonlocal mechanism governing the periodic activity mode: the
greatest common divisor (GCD) of network loops. For a stimulus to one node, the
network splits into GCD-clusters in which cluster neurons are in zero-lag
synchronization. For complex external stimuli, the number of clusters can be
any common divisor. The synchronized mode and the transients to synchronization
pinpoint the type of external stimuli. The findings, supported by an
information mixing argument and simulations of Hodgkin Huxley population
dynamic networks with unidirectional connectivity and synaptic noise, call for
reexamining sources of correlated activity in cortex and shorter information
processing time scales.Comment: 8 pges, 6 figure
Effect of resonant magnetic perturbations on low collisionality discharges in MAST and a comparison with ASDEX Upgrade
Sustained ELM mitigation has been achieved on MAST and AUG using RMPs with a
range of toroidal mode numbers over a wide region of low to medium
collisionality discharges. The ELM energy loss and peak heat loads at the
divertor targets have been reduced. The ELM mitigation phase is typically
associated with a drop in plasma density and overall stored energy. In one
particular scenario on MAST, by carefully adjusting the fuelling it has been
possible to counteract the drop in density and to produce plasmas with
mitigated ELMs, reduced peak divertor heat flux and with minimal degradation in
pedestal height and confined energy. While the applied resonant magnetic
perturbation field can be a good indicator for the onset of ELM mitigation on
MAST and AUG there are some cases where this is not the case and which clearly
emphasise the need to take into account the plasma response to the applied
perturbations. The plasma response calculations show that the increase in ELM
frequency is correlated with the size of the edge peeling-tearing like response
of the plasma and the distortions of the plasma boundary in the X-point region.Comment: 31 pages, 28 figures. This is an author-created, un-copyedited
version of an article submitted for publication in Nuclear Fusion. IoP
Publishing Ltd is not responsible for any errors or omissions in this version
of the manuscript or any version derived from i
Dirty money: a matter of bacterial survival, adherence, and toxicity
In this study we report the underlying reasons to why bacteria are present on banknotes and coins. Despite the use of credit cards, mobile phone apps, near-field-communication systems, and cryptocurrencies such as bitcoins which are replacing the use of hard currencies, cash exchanges still make up a significant means of exchange for a wide range of purchases. The literature is awash with data that highlights that both coins and banknotes are frequently identified as fomites for a wide range of microorganisms. However, most of these publications fail to provide any insight into the extent to which bacteria adhere and persist on money. We treated the various currencies used in this study as microcosms, and the bacterial loading from human hands as the corresponding microbiome. We show that the substrate from which banknotes are produced have a significant influence on both the survival and adherence of bacteria to banknotes. Smooth, polymer surfaces provide a poor means of adherence and survival, while coarser and more fibrous surfaces provide strong bacterial adherence and an environment to survive on. Coins were found to be strongly inhibitory to bacteria with a relatively rapid decline in survival on almost all coin surfaces tested. The inhibitory influence of coins was demonstrated through the use of antimicrobial disks made from coins. Despite the toxic effects of coins on many bacteria, bacteria do have the ability to adapt to the presence of coins in their environment which goes some way to explain the persistent presence of low levels of bacteria on coins in circulatio
Scale-free brain functional networks
Functional magnetic resonance imaging (fMRI) is used to extract {\em
functional networks} connecting correlated human brain sites. Analysis of the
resulting networks in different tasks shows that: (a) the distribution of
functional connections, and the probability of finding a link vs. distance are
both scale-free, (b) the characteristic path length is small and comparable
with those of equivalent random networks, and (c) the clustering coefficient is
orders of magnitude larger than those of equivalent random networks. All these
properties, typical of scale-free small world networks, reflect important
functional information about brain states.Comment: 4 pages, 5 figures, 2 table
From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex
Recent studies have pointed out the importance of transient synchronization
between widely distributed neural assemblies to understand conscious
perception. These neural assemblies form intricate networks of neurons and
synapses whose detailed map for mammals is still unknown and far from our
experimental capabilities. Only in a few cases, for example the C. elegans, we
know the complete mapping of the neuronal tissue or its mesoscopic level of
description provided by cortical areas. Here we study the process of transient
and global synchronization using a simple model of phase-coupled oscillators
assigned to cortical areas in the cerebral cat cortex. Our results highlight
the impact of the topological connectivity in the developing of
synchronization, revealing a transition in the synchronization organization
that goes from a modular decentralized coherence to a centralized synchronized
regime controlled by a few cortical areas forming a Rich-Club connectivity
pattern.Comment: 24 pages, 8 figures. Final version published in PLoS On
Probing the Sensitivity of Electron Wave Interference to Disorder-Induced Scattering in Solid-State Devices
The study of electron motion in semiconductor billiards has elucidated our
understanding of quantum interference and quantum chaos. The central assumption
is that ionized donors generate only minor perturbations to the electron
trajectories, which are determined by scattering from billiard walls. We use
magnetoconductance fluctuations as a probe of the quantum interference and show
that these fluctuations change radically when the scattering landscape is
modified by thermally-induced charge displacement between donor sites. Our
results challenge the accepted understanding of quantum interference effects in
nanostructures.Comment: 8 pages, 5 figures, Submitted to Physical Review
- …