1,405 research outputs found

    Studies of the inner shelf and coastal sedimentation environment of the Beaufort Sea from ERTS-A

    Get PDF
    The author has identified the following significant results. Shearing periodically occurs between the westward moving pack ice (3 to 10 km/d) within the Pacific Gyre and the fast ice along the coast, forming major grounded shear and pressure ridges between the 10 to 40 m isobaths. Ridges occur in patterns conforming to known shoals. The zone of grounded ridges, called stamukhi zone, protects the inner shelf and coast from marine energy and pack ice forces. Relatively undeformed fast ice grows inshore of the stamukhi zone. The boundary is explained in terms of pack ice drift and major promontories and shoals. Intense ice gaging, highly disrupted sediments, and landward migration of shoals suggest that much of the available marine energy is expended on the sea floor within the stamukhi zone. Naleds (products of river icings) on the North Slope are more abundant east than west of the Colville River. Their location, growth, and decay were studied from LANDSAT imagery

    Body mass index and age affect Three-Factor Eating Questionnaire scores in male subjects

    Get PDF
    This cross-sectional analysis evaluated the effect of age and body mass index (BMI) on Three-Factor Eating Questionnaire scores in males. Subjects (n = 60) were recruited according to BMI status. Each completed the 51-item Three-Factor Eating Questionnaire. The group was split at the median age to produce a "younger" and "older" group for statistical analysis. A 2-way between-groups analysis of variance revealed a significant main effect of BMI on disinhibition (P = .003) and hunger (P = .041) with higher levels found in overweight males compared to healthy-weight counterparts. A significant main effect of age on hunger (P = .046) demonstrated older males were less susceptible to hunger than younger males. These insights provide a better understanding of eating behavior across the male life cycle and may assist health professionals to better guide men in weight management in the light of rising overweight/obesity. (c) 2009 Elsevier Inc. All rights reserved

    Artificial Protein Hydrogel Materials

    Get PDF
    Recombinant DNA methods were used to create a new class of artificial proteins that undergo reversible gelation in response to changes in pH or temperature. These proteins consist of terminal a-helical "leucine zipper" domains flanking a central, water-soluble polyelectrolyte segment. The formation of coiled-coil aggregates of the terminal domains in near-neutral pH solution triggers formation of a polymer hydrogel, with the central polyelectrolyte segment retaining solvent and preventing precipitation of the chains. Dissociation of the coiled-coil aggregates through elevation of pH or temperature causes dissolution of the gel and a return to the viscous behavior characteristic of a polymer solution. The pH and temperature range of the hydrogel state and its viscoelastic properties may be systematically varied through precise changes of the length, composition and charge density of the terminal and central blocks. Such control is of value in designing hydrogels with predetermined physical properties and makes these biosynthetic triblock copolymer systems attractive candidates for use in molecular and cellular encapsulation and in controlled reagent delivery

    Design analysis of levitation facility for space processing applications

    Get PDF
    Containerless processing facilities for the space laboratory and space shuttle are defined. Materials process examples representative of the most severe requirements for the facility in terms of electrical power, radio frequency equipment, and the use of an auxiliary electron beam heater were used to discuss matters having the greatest effect upon the space shuttle pallet payload interfaces and envelopes. Improved weight, volume, and efficiency estimates for the RF generating equipment were derived. Results are particularly significant because of the reduced requirements for heat rejection from electrical equipment, one of the principal envelope problems for shuttle pallet payloads. It is shown that although experiments on containerless melting of high temperature refractory materials make it desirable to consider the highest peak powers which can be made available on the pallet, total energy requirements are kept relatively low by the very fast processing times typical of containerless experiments and allows consideration of heat rejection capabilities lower than peak power demand if energy storage in system heat capacitances is considered. Batteries are considered to avoid a requirement for fuel cells capable of furnishing this brief peak power demand

    Faraday waves on a viscoelastic liquid

    Full text link
    We investigate Faraday waves on a viscoelastic liquid. Onset measurements and a nonlinear phase diagram for the selected patterns are presented. By virtue of the elasticity of the material a surface resonance synchronous to the external drive competes with the usual subharmonic Faraday instability. Close to the bicriticality the nonlinear wave interaction gives rise to a variety of novel surface states: Localised patches of hexagons, hexagonal superlattices, coexistence of hexagons and lines. Theoretical stability calculations and qualitative resonance arguments support the experimental observations.Comment: 4 pages, 4figure

    Wetland succession in a permafrost collapse: interactions between fire and thermokarst

    Get PDF
    To determine the influence of fire and thermokarst in a boreal landscape, we investigated peat cores within and adjacent to a permafrost collapse feature on the Tanana River Floodplain of Interior Alaska. Radioisotope dating, diatom assemblages, plant macrofossils, charcoal fragments, and carbon and nitrogen content of the peat profile indicate ~600 years of vegetation succession with a transition from a terrestrial forest to a sedge-dominated wetland over 100 years ago, and to a <i>Sphagnum</i>-dominated peatland in approximately 1970. The shift from sedge to <i>Sphagnum</i>, and a decrease in the detrended tree-ring width index of black spruce trees adjacent to the collapse coincided with an increase in the growing season temperature record from Fairbanks. This concurrent wetland succession and reduced growth of black spruce trees indicates a step-wise ecosystem-level response to a change in regional climate. In 2001, fire was observed coincident with permafrost collapse and resulted in lateral expansion of the peatland. These observations and the peat profile suggest that future warming and/or increased fire disturbance could promote permafrost degradation, peatland expansion, and increase carbon storage across this landscape; however, the development of drought conditions could reduce the success of both black spruce and <i>Sphagnum</i>, and potentially decrease the long-term ecosystem carbon storage

    Exploring the sensitivity of soil carbon dynamics to climate change, fire disturbance and permafrost thaw in a black spruce ecosystem

    Get PDF
    In the boreal region, soil organic carbon (OC) dynamics are strongly governed by the interaction between wildfire and permafrost. Using a combination of field measurements, numerical modeling of soil thermal dynamics, and mass-balance modeling of OC dynamics, we tested the sensitivity of soil OC storage to a suite of individual climate factors (air temperature, soil moisture, and snow depth) and fire severity. We also conducted sensitivity analyses to explore the combined effects of fire-soil moisture interactions and snow seasonality on OC storage. OC losses were calculated as the difference in OC stocks after three fire cycles (~500 yr) following a prescribed step-change in climate and/or fire. Across single-factor scenarios, our findings indicate that warmer air temperatures resulted in the largest relative soil OC losses (~5.3 kg C m<sup>−2</sup>), whereas dry soil conditions alone (in the absence of wildfire) resulted in the smallest carbon losses (~0.1 kg C m<sup>−2</sup>). Increased fire severity resulted in carbon loss of ~3.3 kg C m<sup>−2</sup>, whereas changes in snow depth resulted in smaller OC losses (2.1–2.2 kg C m<sup>−2</sup>). Across multiple climate factors, we observed larger OC losses than for single-factor scenarios. For instance, high fire severity regime associated with warmer and drier conditions resulted in OC losses of ~6.1 kg C m<sup>−2</sup>, whereas a low fire severity regime associated with warmer and wetter conditions resulted in OC losses of ~5.6 kg C m<sup>−2</sup>. A longer snow-free season associated with future warming resulted in OC losses of ~5.4 kg C m<sup>−2</sup>. Soil climate was the dominant control on soil OC loss, governing the sensitivity of microbial decomposers to fluctuations in temperature and soil moisture; this control, in turn, is governed by interannual changes in active layer depth. Transitional responses of the active layer depth to fire regimes also contributed to OC losses, primarily by determining the proportion of OC into frozen and unfrozen soil layers

    Amplification of Fluctuations in Unstable Systems with Disorder

    Full text link
    We study the early-stage kinetics of thermodynamically unstable systems with quenched disorder. We show analytically that the growth of initial fluctuations is amplified by the presence of disorder. This is confirmed by numerical simulations of morphological phase separation (MPS) in thin liquid films and spinodal decomposition (SD) in binary mixtures. We also discuss the experimental implications of our results.Comment: 15 pages, 4 figure

    Self-dual Ginzburg-Landau vortices in a disk

    Get PDF
    We study the properties of the Ginzburg-Laundau model in the self-dual point for a two-dimensional finite system . By a numerical calculation we analyze the solutions of the Euler-Lagrange equations for a cylindrically symmetric ansatz. We also study the self-dual equations for this case. We find that the minimal energy configurations are not given by the Bogomol'nyi equations but by solutions to the Euler Lagrange ones. With a simple approximation scheme we reproduce the result of the numerical calculation.Comment: 8 pages, 4 figures, RevTex macro
    • …
    corecore