

An ionic-gelling alginate drink attenuates postprandial glycaemia in males

HARDEN, Charlotte, RICHARDSON, J Craig, DETTMAR, Peter W, CORFE, Bernard M and PAXMAN, Jenny

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/5722/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

HARDEN, Charlotte, RICHARDSON, J Craig, DETTMAR, Peter W, CORFE, Bernard M and PAXMAN, Jenny (2012). An ionic-gelling alginate drink attenuates postprandial glycaemia in males. Journal of functional foods, 4 (1), 122-128.

Repository use policy

Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in SHURA to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

1	AN IONIC-GELLING ALGINATE DRINK ATTENUATES
2	POSTPRANDIAL GLYCAEMIA IN MALES
3	
4	Charlotte J. Harden ^a , J. Craig Richardson ^b , Peter W.
5	Dettmar ^b , Bernard M. Corfe ^{c*} , Jenny R Paxman ^a
6	
7	^a Centre for Food Innovation, Sheffield Hallam University,
8	Howard St, Sheffield, S1 1WB, UK.
9	^b Technostics Limited, The Deep Business Centre, Tower
10	Street, Kingston Upon Hull, HU1 4BG, UK.
11	^c Department of Oncology, The University of Sheffield,
12	The Medical School, Beech Hill Road, Sheffield, S10 2RX,
13	UK.
14	

* Corresponding author: Dr Bernard Corfe, Department of Oncology, The University of Sheffield, The Medical School, Beech Hill Road, Sheffield, S10 2RX, UK,

E-mail address: b.m.corfe@sheffield.ac.uk

Telephone: +44 (0)114 271 3004

Fax: +44 (0)114 271 3314

ABSTRACT

16	Obese individuals are at increased risk of type 2 diabetes
17	compared to their healthy weight counterparts. Dietary
18	fibre, such as alginate, could attenuate glycaemic
19	disturbances associated with obesity when included in
20	the diet.
21	Forty self-reported, healthy males completed this
22	randomised, single-blinded, controlled, parallel trial to
23	determine the glycaemic response to a controlled test-
24	lunch of mixed composition following an ionic-gelling
25	alginate preload drink compared to an acidic-gelling
26	control.
27	Individual baseline area under the curve was 52% lower
28	(P=0.010) and peak glycaemia was 14% lower (P<
29	0.0005) after the ionic-gelling alginate drink compared
30	with the control. Body fatness was a predictor of
31	postprandial glycaemia however there was no interaction
32	effect between body fat % and treatment type.
33	We have shown ionic-gelling alginate can attenuate
34	glycaemic response to set lunch of mixed composition.
35	Functional foods that include ionic-gelling alginates may
36	benefit those with elevated postprandial blood glucose.
37	KEY WORDS

38 Alginate; glucose; glycemia; gel; body fat

1.0 INTRODUCTION

41	As obesity increases, the incidence of associated co-
42	morbidities rises concomitantly, most dramatically in
43	relation to body mass index-related diabetes (McPherson
44	et al., 2007). Abdominal fatness has been linked with
45	elevated fasting blood glucose (Rezende et al., 2006).
46	Pascot et al. (1999) showed visceral adipose tissue
47	accumulation was accompanied by increased plasma
48	glucose in the fasted state and after a 75g oral glucose
49	load in young and middle aged women. In a six year
50	prospective study Kriketos et al. (2003) showed baseline
51	body fatness and increasing fatness over time to be
52	strong predictors of elevated fasting plasma glucose in
53	individuals 'at-risk' of type 2 diabetes
54	Epidemiological evidence suggests dietary fibres may
55	have a preventive role in the development of type 2
56	diabetes (Meyer et al., 2000). Several mechanisms by
57	which soluble fibres may modulate glycaemic response
58	have been proposed (Augustin et al., 2000). Soluble fibre
59	ingestion reduces carbohydrate digestion rates, therefore
60	aiding regulation of postprandial glycaemia (Augustin et
61	al., 2000; Kimura et al., 1996; Welch, 1994).

63	Soluble fibres have been shown to have beneficial effects
64	in controlling glycaemia following carbohydrate ingestion
65	in healthy volunteers (Goñi et al., 2000; Rigaud et al.,
66	1998; Lavin and Read, 1995). Similarly, fibre-rich foods
67	(Flammang et al., 2006) and fibre supplementation
68	(Sierra et al., 2002) have been shown to help attenuate
69	postprandial glycaemic responses in type 2 diabetic
70	adults. Kaline et al. (2007) reviewed the potential
71	mechanisms by which diets rich in dietary fibre can be
72	useful in diabetes prevention.
73	Alginate is an algal polysaccharide found in the cell walls
74	of certain brown seaweed species. This fibre has been
75	used in several relevant human intervention studies. 5.0g
76	of sodium alginate added to a meal significantly
77	attenuated postprandial glycaemic response in type 2
78	diabetics by 31% compared to the control meal
79	(Torsdottir et al., 1991). Wolf and colleagues (2002)
80	demonstrated that 1.5g of sodium alginate, incorporated
81	into a 100g glucose-based preload drink with an acid-
82	soluble calcium source (to produce an acid-induced
83	viscosity complex), elicited a non-significant drop in peak
84	glycaemia and a significant attenuation of incremental
85	change from baseline area under the curve (AUC) in
86	healthy, non-diabetic adults compared to a soluble fibre-
87	based control. Williams et al. (2004) fed a "crispy bar"

88	containing 5.5g guar gum and 1.6g sodium alginate to
89	healthy adults and measured the resultant glycaemic
90	response compared to an alginate-free bar. Postprandial
91	blood glucose excursions were significantly lower at 15,
92	30, 45, and 120 minutes and the positive incremental
93	AUC was significantly reduced (by 33%) after
94	consumption of the enriched "crispy bar" compared to the
95	alginate-free bar. Paxman et al. (2008a) reported a
96	strong positive correlation between change from
97	individual baseline AUC glycaemia and body fat % when
98	a hypromellose control preload was ingested prior to a
99	test lunch. This positive correlation was not apparent
100	following an ionic gelling sodium alginate preload,
101	providing preliminary evidence to suggest that the
102	enhanced glycaemic response to a meal at higher body
103	fat could be normalised following ingestion of an alginate
104	preload identical to the one used in the present study.
105	Hoad et al. (2004) fed volunteers a strong gelling (high-G)
106	and a weaker gelling (low-G) alginate meal, a guar-based
107	meal or a control (without added fibre) and examined the
108	resultant gastric emptying rates. In vitro, both alginate
109	meals formed intragastric gel 'lumps', and in the case of
110	the strong-gelling alginate, this was reportedly associated
111	with a feeling of fullness and a reduction in hunger. Hoad
112	and colleagues (2004) purport that acid-gelling agents

	1
	2
	3 4
	5
	6
	7
	8 9
1	0
1	1
1 1	∠ २
1	4
1	5
1	67
1 1	, 8
1	9
2	0
2 2	1 2
2	3
2	4
2	5
2 2	ю 7
2	8
2	9
3 2	0 1
3	1 2
3	3
3	4
3 3	5 6
3	7
3	8
3 4	9 0
- 4	1
4	2
4	3
4 4	4 5
4	6
4	7
4 4	8 a
ч 5	0
5	1
5	2
э 5	3 4
5	5
5	6
5 5	7 8
5	9
6	0
6	1
ь 6	∠ 3
6	4
	-

113	such as alginate may be usefully incorporated into
114	weight-reducing diets/ foods in order to enhance antrum
115	distension and/ or manipulate nutrient uptake from the
116	ileum.
117	Alginate is widely used in the food industry as a thickener,
118	stabiliser and gelling agent (Brownlee et al., 2005). Its
119	constituent sugar residues are D-mannuronic (M) and L-
120	guluronic acid (G). Homopolymeric G blocks (comprising
121	diaxial linkages in the ${}^{1}C_{4}$ conformation) can react with
122	Ca^{2+} and H ⁺ ions to yield a strong, cross-linked gel
123	(Brownlee et al., 2005; Seal and Mathers, 2001; Kimura
124	et al, 1996). Consequently, the gel strength of alginate
125	and its consequent biochemical and biophysical
126	properties are determined by its chemical structure.
127	Specific alginates and specific alginate formulations are
128	therefore likely to react differently within the
129	gastrointestinal milieu.
130	The primary objective of the present study was to
131	examine the effect of alginate gelled ionically compared
132	to acidically (control) on glycaemic response to a
133	standard meal of mixed composition. Secondary to this,
134	we investigated how body fatness affects the postprandial
135	glycaemic response when subjects ingest the ionic-
136	gelling formulation compared to the acid-gelling control.

137	
138	
139	2.0 MATERIALS AND METHODS
140	2.1 Subjects
141	41 male subjects participated in the study. Only one
142	subject was excluded, due to unusually low fasting
143	glucose levels, leaving complete datasets for 40
144	participants. Subjects aged 18 to 65 years were eligible
145	to take part providing they did not meet any of the criteria
146	for exclusion which were; type 1 or 2 diabetes, history of,
147	or current cardiovascular complaints (or if they had been
148	fitted with a pacemaker or other implantable electronic
149	device) or gastrointestinal complaints (such as irritable
150	bowel syndrome or inflammatory bowel disorder,
151	dumping syndrome or Cushing's syndrome), current fibre
152	supplement use, use of constipation-causing drugs such
153	as codeine or morphine, bowel blockage, bowel muscle
154	weakness or recent food poisoning. In addition, anyone
155	with a known allergy to, or intolerance of, the foods or
156	ingredients used in the experiment was excluded from
157	taking part, as were vegans (due to the nature of the
158	foods used).

159	Baseline pre-screening took place less than one week
160	prior to the experimental phase, in which subjects
161	completed a general health questionnaire and various
162	anthropometric measures were made. Height and weight
163	were recorded (SECA 709 mechanical column scales
164	with SECA 220 telescopic measuring rod; SECA United
165	Kingdom, Birmingham) and body mass index (BMI) was
166	calculated. Bioelectrical impedance analysis was
167	undertaken following 5 minutes of supine rest on non-
168	conducting foam matting using a BodyStat 1500
169	(BodyStat Ltd., Isle of Man, British Isles). Body fat % was
170	recorded. Subjects completed a 51-item Three Factor
171	Eating Questionnaire (TFEQ; Stunkard and Messick,
172	1985) to determine eating behaviour across three pre-
173	defined factors. Mean values for all three factors;
174	restraint, disinhibition and hunger, were low for the group
175	as a whole (Stunkard and Messick, 1985). Subject
176	characteristics are reported in Table 1. This study was
177	approved by the relevant University Ethics Committee
178	(Ref: FIRC/2006/RE21). All subjects gave informed
179	consent to participate.
180	2.2 Study Design
181	In this randomised, single-blinded, controlled parallel trial
182	subjects $(n = 40)$ were split equally either side of the

183	median into haptiles by body fatness (lower body fat
184	group: <16.10%, upper body fat group: ≥16.10%).
185	Following a 12 hour overnight fast, all subjects consumed
186	a controlled breakfast at 9am (60g Kellogg's [®] Hint of
187	Honey Corn Flakes; Kellogg's Company GB Limited,
188	Manchester, 125ml semi-skimmed milk and 200ml 'Drink
189	Fresh' orange juice; DCB Foodservice, Herts). After
190	breakfast subjects were asked to travel to the laboratory
191	using motorised transport to minimise energy expenditure.
192	From breakfast until 11am subjects consumed only
193	bottled spring water (Highland Spring still natural mineral
194	water with a sports cap, 2 x 500ml; Highland Spring Ltd,
195	Perthshire, Scotland) to a maximum volume of 1 litre.
196	Water consumption was ad libitum but the bottles were
197	weighed prior to the experiment and at 11am in order to
198	determine the exact amount consumed before the test-
199	lunch. Upon arrival at the facility for the experimental day,
200	subjects were randomly allocated to one of two preload
201	treatments; an ionic-gelling sodium alginate formulation
202	(SA) or an acid-gelling excipient free control (EF).
203	2.3 Preload Formulations and Glycaemia
204	The SA formulation contained sodium alginate, calcium
205	carbonate (CaCO ₃) and buffering agents. It was
206	specifically formulated to undergo enhanced ionic

207	intragastric gelation upon ingestion. This is achieved by
208	mixing sodium alginate with an acid soluble calcium salt.
209	Post-ingestion solubilisation of calcium salt in acidic
210	gastric fluid liberates free calcium ions which are then
211	available to cross-link with the sodium alginate. The SA
212	formulation has been described in detail by Paxman et al.
213	(2008b). The EF control is identical in composition to SA
214	with the omission of the $CaCO_3$. This formulation yields a
215	gel via acid gelation (in the absence of calcium), resulting
216	in weaker intra-molecular hydrogen bonded mass.
217	Prior to preload ingestion, baseline glycaemia (11:45am,
218	0 minutes) was determined using capillary blood taken
219	from the finger. A single use Accu-check® Softclix® Pro
220	lancing device was used to obtain a single droplet sample
221	via OneTouch® Ultra® Test Strips with FastDrawTM
222	design. The OneTouch® Ultra® Blood Glucose
223	Monitoring System was used to determine glycaemia
224	(reference range 1.1 to 33.3mmol/l; Lifescan Inc., Bucks).
225	Each preload was served at 12:00pm (15 minutes after
226	baseline glycaemia measurements) in an opaque non-
227	descript plastic cup in standard feeding booths in green
228	light. The coloured light masked a very slight colour
229	difference between preload drinks. The drinks were
230	flavoured with vanilla to yield an orosensory match.
231	Subjects were instructed to drink the entire product. All

- preloads were consumed within 5 minutes of their initial
- 233 hydration with 100ml bottled water.
- 234 Following ingestion of the product (12:15pm, 30 minutes
- 235 from baseline), glycaemia was again determined
- 236 following identical protocol.

237 2.4 Test-lunch

Volunteers ingested a controlled test-lunch of mixed composition thirty minutes after consuming the preload drink (12:30pm, 45 minutes from baseline) in standard feeding booths in natural light. The test-lunch consisted of 300g pre-cooked then chilled penne pasta (Don Mario 100% durum wheat semolina pasta guills', manufactured by Abbey Foods Ltd, PO BOX 178, Liverpool) and 100g Sacla Italia [™] vine-ripened tomato and mascarpone stir through sauce (F.Ili Sacla S.p.A. Asti Italy; Sacla UK LTD, Basil House, 21 London End, Bucks). This test-lunch was heated to a temperature of at least 72 °C in a microwave and was served at a temperature of between 60-65 ℃. Subjects were instructed to consume the entire test-lunch and all subjects adhered to protocol.

The meal provided 57%, 13% and 30% of total energyfrom carbohydrate, protein and fat respectively, as

255	analysed by NetWISP (version 3.0 for Windows, Tinuviel
256	Software, Anglesey, UK). The test-lunch protocol used
257	here has been described previously (Paxman et al.,
258	2008a).
259	2.5 Protocol Postprandially
260	Further measures of capillary glucose were obtained at
261	90, 120, 150, 180, 210, 240, 270 and 330 minutes from
262	baseline. In total, ten capillary blood samples were taken
263	to determine glycaemia up to 330 minutes from baseline
264	(270 minutes postprandially).
265	2.6 Statistical analysis
266	Blood glucose measures were converted to delta area
267	under the curve (AUC) using the trapezoid rule with
268	subtraction of basal values (NCSS; Hintze, 2004, NCSS
269	and PASS Number Cruncher Statistical Systems,
270	Kaysville, Utah). Two-way between groups ANOVAs
271	were performed in order to identify the main effects of
272	treatment and body fat haptile and any interaction effects
273	on glycaemia at each time point, change from individual
274	baseline AUC glycaemia and peak postprandial
275	glycaemia (SPSS; version 15.0 for Windows, SPSS Inc.,
276	Chicago, IL, USA). Graphical presentations were
277	produced using SPSS (version 15.0 for Windows, SPSS
278	Inc. Chicago, II. LICA) and Microsoft Event 0000
	Inc., Unicago, IL, USA) and Microsoft Excel 2003

	1
	2
	3
	4
	5
	6
	7
	ģ
	a
1	0
1	1
1	т Т
1	2
1	3
T	4
1	5
1	6
1	7
1	8
1	9
2	0
2	1
2	2
2	3
2	4
⊿ ೧	т Г
2	5
2	6
2	7
2	8
2	9
3	0
3	1
	2
3	2
3 3	∠ २
337	∠ 3 4
3337	⊿ 3 4 5
3 3 3 3 2	2 3 4 5 6
3 3 3 3 3 5 7	⊿ 3 4 5 6 7
333333	234 567
333333	2 3 4 5 6 7 8
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	23456789
3 3 3 3 3 3 3 3 3 4	234567890
3 3 3 3 3 3 3 3 4 4	2345678901
3 3 3 3 3 3 3 4 4 4 4	23456789012
3 3 3 3 3 3 3 3 3 4 4 4 4 4	234567890123
333333344444	2345678901234
3 3 3 3 3 3 3 4 4 4 4 4 4	23456789012345
33333344444444	234567890123456
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4	2345678901234567
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4	23456789012345678
3333333444444444444	234567890123456780
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4	2345678901234567890
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5	23456789012345678901
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 -	23456789012345678901
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 -	234567890123456789012
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	2345678901234567890123
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	23456789012345678901234
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	234567890123456789012345
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	2345678901234567890123456
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	23456789012345678901234567
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	234567890123456789012345678
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	2345678901234567890123456789
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	23456789012345678901234567890
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	234567890123456789012345678901
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	2345678901234567890123456789012
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	23456789012345678901234567890122
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	234567890123456789012345678901234
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	2345678901234567890123456789012345

- 279 (Microsoft Office, Microsoft Corporation). Significance
- 280 was set at p < 0.05. Data are presented as mean ± 1 SD.

3.0 RESULTS

- 283 Forty self-reported healthy male subjects (equal numbers
- in each treatment arm) successfully completed the
- 285 experiment with no deviation from protocol.

3.1 lonic gelling sodium alginate attenuates the

287 glycaemic response to a meal

288 Two-way between groups ANOVAs showed a significant

effect of treatment type on glycaemia at 90 (p< .0005),

290 150 (*p*= .003), 180 (*p*= .021) and 210 (*p*= .013) minutes

291 (see Figure 1). Overall, ingestion of SA compared to EF

292 resulted in a significant reduction in a mean change from

293 individual baseline AUC glycaemia (\underline{M} = 148.43 ± 148.65

294 vs. <u>M</u>= 312.53 ± 253.60; *p*= .010) of 52.5% (see Figure 1).

- 295 Irrespective of treatment type, subjects in the lower
- 296 haptile for body fat % had a reduced mean change from
- 297 individual baseline AUC glycaemia (177.68 ± 255.44)
- 298 compared to those in the upper haptile for body fat %
- 299 (283.28 ± 171.66; *p*= .065; data not shown) however, this
- 300 was not significant and there was no interaction effect
- 301 between treatment type and body fat % grouping.
- б

3.2 lonic gelling sodium alginate reduces peak

303 postprandial glycaemia

- 304 Preload type failed to affect the timing of peak glycaemia
- 305 as shown in Figure 1. However, Figure 2 shows the
- 306 significant 14% lower mean peak postprandial glycaemia
- 307 at 90 minutes following SA versus EF (\underline{M} = 6.06 ± .59
- 308 mmol/L vs. <u>M</u>= $6.92 \pm .70$ mmol/L; *p*< .0005) for the study
- 309 group as a whole. Subjects in the lower body fat haptile
- 310 had a lower peak postprandial glycaemia (6.39
- $\pm .85$ mmol/L) than those in the upper body fat haptile,
- 312 irrespective of treatment type (6.59 \pm .70mmol/L; p= .170;
- 313 data not shown) however this was not significant and
- 314 there was no interaction effect between treatment type
- and body fat % grouping.
- **3.3 Body fat classification determines the**
- 317 postprandial glycaemic response to a meal but the
- 318 beneficial effects of alginate remain
- 319 Irrespective of treatment type, subjects in the upper body
- 320 fat haptile had non-significantly elevated peak
- 321 postprandial glycaemia and non-significantly greater
- 322 mean change from individual baseline AUC glycaemia
- 323 compared to those in the lower body fat haptile. In
- 324 addition, body fat % grouping had a significant effect on
- 325 delta glycaemia at 120 (p= .005), 150 (p= .012), 180
- б

326	(p = .049) and 210 minutes (p = .046) from baseline, with
327	subjects in the upper body fat haptile having higher mean
328	glycaemia than those in the lower body fat haptile at
329	these time points, irrespective of preload treatment
330	(Figure 3).
331	For glycaemia at each time point, change from individual
332	baseline AUC glycaemia and peak postprandial
333	glycaemia however, the two-way between-groups
334	ANOVA showed no interaction effect between treatment
335	type and body fat % grouping in each case. Subjects
336	appeared to respond to the ionic-gelling sodium alginate
337	(SA) treatment in a similar fashion irrespective of body
338	fat %.
338 339	fat %. Examination of the response to treatment type by body
338 339 340	fat %. Examination of the response to treatment type by body fat % grouping showed the lower body fat haptile on SA
338 339 340 341	fat %. Examination of the response to treatment type by body fat % grouping showed the lower body fat haptile on SA reduced their change from individual baseline AUC
338 339 340 341 342	fat %. Examination of the response to treatment type by body fat % grouping showed the lower body fat haptile on SA reduced their change from individual baseline AUC glycaemia by 68.3%, and their peak postprandial
338 339 340 341 342 343	fat %. Examination of the response to treatment type by body fat % grouping showed the lower body fat haptile on SA reduced their change from individual baseline AUC glycaemia by 68.3%, and their peak postprandial glycaemia by 16.2% compared to the lower body fat
338 339 340 341 342 343 344	fat %. Examination of the response to treatment type by body fat % grouping showed the lower body fat haptile on SA reduced their change from individual baseline AUC glycaemia by 68.3%, and their peak postprandial glycaemia by 16.2% compared to the lower body fat haptile on EF. A slightly weaker effect was apparent in
338 339 340 341 342 343 344 345	fat %. Examination of the response to treatment type by body fat % grouping showed the lower body fat haptile on SA reduced their change from individual baseline AUC glycaemia by 68.3%, and their peak postprandial glycaemia by 16.2% compared to the lower body fat haptile on EF. A slightly weaker effect was apparent in the upper body fat haptile on SA who reduced their
338 339 340 341 342 343 344 345 346	fat %. Examination of the response to treatment type by body fat % grouping showed the lower body fat haptile on SA reduced their change from individual baseline AUC glycaemia by 68.3%, and their peak postprandial glycaemia by 16.2% compared to the lower body fat haptile on EF. A slightly weaker effect was apparent in the upper body fat haptile on SA who reduced their change from individual baseline AUC glycaemia by
338 339 340 341 342 343 344 345 346 347	fat %. Examination of the response to treatment type by body fat % grouping showed the lower body fat haptile on SA reduced their change from individual baseline AUC glycaemia by 68.3%, and their peak postprandial glycaemia by 16.2% compared to the lower body fat haptile on EF. A slightly weaker effect was apparent in the upper body fat haptile on SA who reduced their change from individual baseline AUC glycaemia by 46.6%, and their peak postprandial glycaemia by 9.7%
338 339 340 341 342 343 344 345 346 347 348	fat %. Examination of the response to treatment type by body fat % grouping showed the lower body fat haptile on SA reduced their change from individual baseline AUC glycaemia by 68.3%, and their peak postprandial glycaemia by 16.2% compared to the lower body fat haptile on EF. A slightly weaker effect was apparent in the upper body fat haptile on SA who reduced their change from individual baseline AUC glycaemia by 46.6%, and their peak postprandial glycaemia by 9.7% compared to those in the upper body fat haptile on the EF

- 350 previous suggestions relating to altered glycaemic
- response and body fatness (Paxman et al., 2008a).
- 353 In summary, glycaemic response to the test-meal was
- 354 reduced following ingestion of the ionic-gelling sodium
- 355 alginate drink (SA) compared to the acid-gelling
- 356 excipient-free formulation (EF) throughout the 330 minute
- 357 measurement period. Body fatness influenced
- 358 postprandial glycaemic response but the effect of the
- 359 ionic-gelling alginate drink was maintained.

4.0 DISCUSSION

- The literature suggests soluble fibre can alter subjective hunger and fullness ratings (Peters et al., 2011), gastric emptying rate and intestinal nutrient absorption, though the extent and subsequent effect on glycaemia is poorly established (Wolf et al., 2002; Delargy et al., 1997; Fairchild et al., 1996). Contradictory reports are most likely explained by the type, dose, homogeneity and physicochemical properties of fibres used, and differing participant characteristics between studies. The physiochemical properties of alginate have particular potential in terms of attenuating postprandial glycaemic
- б

response and improving diabetic control (Williams et al., 2004; Wolf et al., 2002; Torsdottir et al., 1991). Highly viscous solutions are unpalatable; solutions which form solid gel particles in the gastric lumen may provide a more feasible alternative for controlling gastric emptying and nutrient uptake. In order to establish an optimum formulation for delivery of a glycaemia-modulating alginate, the physiological response to ionic- and acid-gelling alginates were compared in males of differing body fatness. Physiologic data show greater glucose intolerance among the obese and numerous prospective studies support such associations between measures of obesity and type 2 diabetes risk (Carey et al., 1997). Such differences are postulated to be connected with body fatness. Our data show that the ionic-gelling sodium alginate drink (SA) reduced early-phase and peak postprandial glycaemia and flattened the postprandial glycaemic curve in comparison to the acid-gelling control (EF). From baseline to 30 minutes, the EF preload drink resulted in a slight elevation of blood glucose, most likely due to the 7g fructose contained within the formulation. In comparison, the SA preload treatment elicited no change in glycaemia during this period despite containing the same amount of fructose. The difference between these responses can

398	most probably be attributed to the addition of calcium
399	carbonate in the SA formulation. The acid-soluble
400	calcium salt was expected to facilitate intra-gastric ionic
401	gelation of the drink (Kimura et al., 1996). When alginate
402	formulations are pH dependent there is a known time lag
403	of 25-40 minutes before gelation occurs (Mattes, 2007).
404	The inhibition of a glycaemic response to the SA
405	formulation could have resulted from immediate fructose
406	entrapment, delayed gastric emptying or both. Torsdottir
407	et al. (1991) reported delayed glucose delivery and
408	reduced glycaemic peak in type 2 diabetics by the
409	addition of alginate to meals. They attributed this
410	response solely to delayed gastric emptying, measured
411	by aspirated radioactive stomach contents. There is
412	evidence to suggest alginate ingestion results in 'gel
413	lump' formation, which alters nutrient transport to the
414	small intestine (Hoad et al., 2004). In this study the
415	glycaemic response to a test-lunch of mixed composition
416	following the SA drink was consistently lower throughout
417	the investion, thus it seems likely that nutrients were
418	captured within the gel matrix to some degree.
419	Hoad et al. (2004) used serial magnetic resonance
420	imaging (MRI) to gather in vivo measurements of guar
421	gum and weak and strong gelling alginates that had been
422	incorporated into milk-based drinks. MRI images showed

	1
	2
	3
	4
	5
	6
	7
	8
	9
1	0
1	1
1	1 2
1	2 2
1	כ ⊿
1	4 r
1	5 6
1	0
1	/
T	8
1	9
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2	7
2	8
2	9
3	0
3	1
2	2
2	2
2 2	л Л
2 2	- 5
с 2	5 6
3	ט ד
3	/
3	8
3	9
4	0
4	1
4	2
4	3
4	4
4	5
4	6
4	7
4	8
4	9
5	0
5	1
5	2
5	3
5	4
5	5
5	6
5	7
5	8
5	a
2	0
6	1
6	⊥ 2
6	∠ ?
0	د ۸
0	4 5
0	:)

423	heterogeneous distribution of alginate formulations in the
424	stomach with the formation of 'lumps', compared to the
425	homogenous distribution of guar gum. Initial 'gel lump'
426	formation was observed 10 minutes postprandially, other
427	'lumps' developed over time, compatible with the pH
428	decrease normally observed following ingestion of a meal.
429	In addition, the strong gelling alginate resulted in
430	significantly increased intragastric gel 'lump' production
431	compared to the weak gelling. Data from 'lump'
432	classification showed liquid filled 'lumps' were formed
433	predominantly with the strong gelling alginate; the
434	researchers hypothesise this gel strength is sufficient to
435	allow layer formation which resist break forces caused by
436	stomach motion.
436 437	stomach motion. There is a prevailing assumption that BMI measurement
436 437 438	stomach motion. There is a prevailing assumption that BMI measurement is strongly associated with body fatness and consequent
436 437 438 439	stomach motion. There is a prevailing assumption that BMI measurement is strongly associated with body fatness and consequent morbidity and mortality (Gallagher et al., 2000).
436 437 438 439 440	stomach motion. There is a prevailing assumption that BMI measurement is strongly associated with body fatness and consequent morbidity and mortality (Gallagher et al., 2000). Increased postprandial blood glucose is independently
436 437 438 439 440 441	stomach motion. There is a prevailing assumption that BMI measurement is strongly associated with body fatness and consequent morbidity and mortality (Gallagher et al., 2000). Increased postprandial blood glucose is independently related to the risk of cardiovascular disease and all-cause
436 437 438 439 440 441 442	stomach motion. There is a prevailing assumption that BMI measurement is strongly associated with body fatness and consequent morbidity and mortality (Gallagher et al., 2000). Increased postprandial blood glucose is independently related to the risk of cardiovascular disease and all-cause mortality in newly diagnosed type 2 diabetics. Some
436 437 438 439 440 441 442 443	stomach motion. There is a prevailing assumption that BMI measurement is strongly associated with body fatness and consequent morbidity and mortality (Gallagher et al., 2000). Increased postprandial blood glucose is independently related to the risk of cardiovascular disease and all-cause mortality in newly diagnosed type 2 diabetics. Some individuals classified overweight by BMI do not have
436 437 438 439 440 441 442 443 444	stomach motion. There is a prevailing assumption that BMI measurement is strongly associated with body fatness and consequent morbidity and mortality (Gallagher et al., 2000). Increased postprandial blood glucose is independently related to the risk of cardiovascular disease and all-cause mortality in newly diagnosed type 2 diabetics. Some individuals classified overweight by BMI do not have high % body fat. Conversely, others who have normal or
436 437 438 439 440 441 442 443 444 445	stomach motion. There is a prevailing assumption that BMI measurement is strongly associated with body fatness and consequent morbidity and mortality (Gallagher et al., 2000). Increased postprandial blood glucose is independently related to the risk of cardiovascular disease and all-cause mortality in newly diagnosed type 2 diabetics. Some individuals classified overweight by BMI do not have high % body fat. Conversely, others who have normal or healthy BMIs have a relatively high body fat %.
436 437 438 439 440 441 442 443 444 445 446	stomach motion. There is a prevailing assumption that BMI measurement is strongly associated with body fatness and consequent morbidity and mortality (Gallagher et al., 2000). Increased postprandial blood glucose is independently related to the risk of cardiovascular disease and all-cause mortality in newly diagnosed type 2 diabetics. Some individuals classified overweight by BMI do not have high % body fat. Conversely, others who have normal or healthy BMIs have a relatively high body fat %. Individuals who are misclassified by BMI are reportedly
436 437 438 439 440 441 442 443 444 445 445 446 447	stomach motion. There is a prevailing assumption that BMI measurement is strongly associated with body fatness and consequent morbidity and mortality (Gallagher et al., 2000). Increased postprandial blood glucose is independently related to the risk of cardiovascular disease and all-cause mortality in newly diagnosed type 2 diabetics. Some individuals classified overweight by BMI do not have high % body fat. Conversely, others who have normal or healthy BMIs have a relatively high body fat %. Individuals who are misclassified by BMI are reportedly uncommon relative to the UK population as a whole but

since body fatness is a stronger predictor of increased
fasting glucose than BMI (Kriketos et al., 2003) it is more
appropriate and meaningful to divide subjects in the
present study by body fat %. In support of this, the
present study clearly shows subjects in the upper body
fat haptile had comparatively elevated early-phase
glycaemic excursion to those in the lower body fat haptile.

5.0 CONCLUSIONS

We conclude that an ionic-gelling sodium alginate drink can significantly attenuate postprandial glycaemic response in self-reported healthy males in comparison to an acid-gelling control. This effect persisted in subjects in both the lower and upper haptiles of body fatness. The benefits of optimising glycaemic control through the use of ionic-gelling sodium alginate products in patients with morbidity related to body fatness (including type 2 diabetic and metabolic syndrome patients) warrant further investigation.

ROLE OF THE FUNDING SOURCE

- 469 This work was financially supported by Technostics Ltd.,
- 470 UK, who also had input into the overall design, write up
- 471 and submission of this work.

REFERENCES

- 474 Augustin, L.S.A., Axelsen, M., Jenkins, D.J.A., Kendall,
- 475 C.W.C., Smith, U., and Vuksan, V. Dietary fibre,
- 476 carbohydrates, and insulin resistant diseases, British
- 477 Journal of Nutrition 83 (2000), 157.
- 478 Brownlee, I.A., Allen, A., Pearson, J.P., Dettmar, P.W.,
- 479 Havler, M.E., Atherton, M.R., and Onsøyen, E. Alginate
- 480 as a source of dietary fibre, *Critical Reviews in Food*
- *Sciences and Nutrition 45* (2005), pp. 497-510.
- 482 Carey, V.J., Walters, E.E., Colditz, G.A., Soloman, C.G.,
- 483 Willett, W.C., Rosner, B.A., Speizer, F.E., and Manson,
- 484 J.E. Body fat distribution and risk of non-insulin
- 485 dependent diabetes mellitus in women, American Journal
- *of Epidemiology 145* (1997), pp. 614-619.
- 487 Delargy, H.J., O'Sullivan, K.R., Fletcher, R.J., and
- 488 Blundell, J.E. Effects of amount and type of dietary fibre
- 489 (soluble and insoluble) on short-term control of appetite,
- 490 International Journal of Food Science and Nutrition 48
- 491 (1997), pp. 67-77.

492	Fairchild, R.M., Ellis, P.R., Byrne, A.J., Luzio, S.D., and
493	Mir, M.A. A new breakfast cereal containing guar gum
494	reduces postprandial plasma glucose and insulin
495	concentrations in normal-weight human subjects, British
496	Journal of Nutrition 76 (1996), pp. 63-73.
497	Flammang, A.M., Kendall, D.M., Baumgartner, C.J.,
498	Slagle, T.D., and Choe, Y.S. Effect of a viscous fiber bar
499	on postprandial glycemia in subjects with type 2 diabetes,
500	Journal of the American College of Nutrition 25 (2006), pp.
501	409-414.
502	Gallagher, D., Heymsfield, S.B., Heo, M., Jebb, S.A.,
503	Murgatroyd, P.R., and Sakamoto, Y. Healthy percentage
504	body fat ranges: an approach for developing guidelines
505	based on body mass index, American Journal of Clinical
506	Nutrition 72 (2000), pp. 694-701.
507	Goñi, I., Valdivieso, L., and Garcia-Alonso, A. Nori
508	seaweed consumption modifies glycemic response in
509	healthy volunteers, Nutrition Research 20 (2000), pp.
510	1367-1375.
511	Hoad, C.L., Rayment, P., Spiller, R.C., Marciani, L., de
512	Celis Alonso, B., Traynor, C., Mela, D.J., Peters, H.P.F.,
513	and Gowland, P.A. In vivo imaging of intragastric gelation
514	and its effect on satiety in humans, Journal of Nutrition
515	<i>134</i> (2004), pp. 2293-2300.

516	Jenkins, D.J.A., Axelsen, M., Kendall, C.W.C., Augustin,
517	L.S.A., Vuksan, V., and Smith, U. Dietary fibre, lente
518	carbohydrates and the insulin-resistant diseases, British
519	Journal of Nutrition 83 (2000), pp. S157-S163.
520	Kaline, K., Bornstein, S.R., Bergmann, A., Hauner, H.,
521	and Schwarz, P.E.H. The importance and effect of
522	dietary fiber in diabetes prevention with particular
523	consideration of whole grain products, Hormone and
524	Metabolic Research 39 (2007), pp 687-693.
525	Kimura, Y., Watanabe, K., and Okuda, H. Effects of
526	soluble sodium alginate on cholesterol excretion and
527	glucose tolerance in rats, Journal of Ethnopharmacology
528	<i>54</i> (1996), pp. 47-54.
529	Kriketos, A.D., Carey, D.G., Jenkins, A.B., Chisholm, D.J.,
530	Furler, S.M., and Campbell, L.V. Central fat predicts
531	deterioration of insulin secretion index and fasting
532	glycaemia: 6-year follow-up of subjects at varying risk of
533	type 2 diabetes mellitus, <i>Diabetic Medicine 20</i> (2003), pp.
534	294-300.
535	Lavin, J.H., and Read, N.W. The effect on hunger and
536	satiety of slowing the absorption of glucose: relationship
537	with gastric emptying and postprandial blood glucose and
538	insulin responses, <i>Appetite 25</i> (1995), pp. 89-96.

539	Mattes, R.D. Effects of a combination fibre system on
540	appetite and energy intake in overweight humans,
541	Physiology and Behavior 90 (2007), pp. 705-711.
542	McPherson, K., Marsh, T., and Brown, M. Modelling
543	Future Trends in Obesity and the Impact on Health
544	Foresight Tackling Obesities: Future Choices (2nd
545	Edition, 2007) Government Office for Science, UK.
546	Meyer, K.A., Kushi, L.H., Jacobs Jr., D.R., Slavin, J.,
547	Sellers, T.A., and Folsom, A.R. Carbohydrates, dietary
548	fibre, and incident type 2 diabetes in older women.
549	American Journal of Clinical Nutrition 71 (2000), pp. 921-
550	930.
551	Pascot, A., Lemieux, S., Lemieux, I., Prud'homme, D.,
552	Tremblay, A., Bouchard, C., Nadeau, A., Couillard, C.,
553	Tchernof, A., Bergeron, J., and Després, J.P. Age-related
554	increase in visceral adipose tissue and body fat and the
555	metabolic risk profile of premenopausal women, Diabetes
556	<i>Care 22</i> (1999), pp. 1471-1478.
557	Paxman, J.R., Richardson, J.C., Dettmar, P.W., and
558	Corfe, B.M. Alginate reduces the increased uptake of
559	cholesterol and glucose in overweight male subjects: a
560	pilot study, Nutrition Research 28 (2008a), pp. 501-505.

1	
3	
4 5	
6 7	
8 9	
10	
12	
13 14	
15 16	
17 18	
19 20	
21	
22	
24 25	
26 27	
28 29	
30 31	
32 33	
34 25	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
47	
40 49	
50 51	
52 53	
54 55	
56 57	
58 59	
60 61	
б⊥ 62	
63 64	
65	

561	Paxman, J.R., Richardson, J.C., Dettmar, P.W., and
562	Corfe, B.M. Daily ingestion of alginate reduces energy
563	intake in free-living subjects, Appetite 51 (2008b), pp.
564	713-719.
565	Peters, H.P.F., Koppert, R.J., Boers, H.M., Ström, A.,
566	Melnikov, S.M., Haddeman, E., Schuring, E.A.H., Mela,
567	D.J. and Wiseman, S.A. Dose-dependent suppression of
568	hunger by a specific alginate in a low-viscosity drink
569	formulation, <i>Obesity</i> (2011), doi: 10.1038/oby.2011.63.
570	Pinhas-Hamiel, O., and Zeitler, P. The global spread of
571	type 2 diabetes mellitus in children and adolescents, The
572	Journal of Pediatrics 146 (2005), pp. 693-700.
573	Prentice, A., and Jebb, S. Energy intake/physical activity
574	interactions in the homeostasis of body weight regulation,
575	Nutrition Reviews 62 (2004), pp. S98-S104.
576	Rezende, F.A.C., Rosado, L.E.F.P.L., Ribeiro, R.C.L.,
577	Vidigal, F.C., Vasques, A.C.J., Bonard, I.S., and de
578	Carvalho, C.R. Body mass index and waist circumference:
579	association with cardiovascular risk factors, Arquivos
580	Brasileiros de Cardiologia 87 (2006), pp. 728-734.
581	Rigaud, D., Paycha, F., Meulemans, A., Merrouche, M.,
582	and Mignon, M. Effect of psyllium on gastric emptying,
583	hunger feeling and food intake in normal volunteers: a

584	double blind study. European Journal of Clinical Nutrition
585	<i>52</i> (1998), pp. 239-245.
586	Seal, C.J., and Mathers, J.C. Comparative
587	gastrointestinal and plasma cholesterol responses of rats
588	fed on cholesterol-free diet supplemented with guar gum
589	and sodium alginate, British Journal of Nutrition 85 (2001),
590	рр. 317-324.
591	Sierra, M., Garcia, J.J., Fernández, N., Diez, M.J., Calle,
592	A.P., and Farmafibra Group. Therapeutic effects of
593	psyllium in type 2 diabetic patients, European Journal of
594	Clinical Nutrition 56 (2002), pp. 830-842.
595	Strugala, V., Kennington, E.J., Skjåk-Bræk, G., and
596	Dettmar, P.W. Bioactive properties of epimerised
597	alginates. In Williams, P.A., and Phillips, G.O. (Eds.),
598	Gums and Stabilisers for the Food Industry 12 Cambridge,
599	UK, The Royal Society of Chemistry (2004), pp.262-271.
600	Stunkard, A.J., and Messick, S. The three-factor eating
601	questionnaire to measure dietary restraint disinhibition
602	and hunger, Journal of Psychosomatic Research 29
603	(1985), pp. 71-83.
604	Torsdottir, I., Alpsten, M., Holm, G., Sandberg, A.S., and
605	Tolli, J. A small dose of soluble alginate fiber affects
606	postprandial glycemia and gastric emptying in humans

607	with diabetes. Journal of Nutrition 121 (1991), pp. 795-
608	799.
609	Welch, R.W. Can dietary oats promote health? British
610	Journal of Biomedical Science 51 (1994), pp. 260-270.
611	Williams, J.A., Lai, C., Corwin, H., Ma, Y., Maki, K.C.,
612	Garleb, K.A., and Wolf, B.W. Inclusion of guar gum and
613	alginate into a crispy bar improves postprandial glycemia
614	in humans. Journal of Nutrition 134 (2004), pp. 886-889.
615	Wolf, B.W., Lai, C., Kipnes, M.S., Ataya, D.G., Wheeler,
616	K.B., Zinker, B.A., Garleb, K.A., and Firkins, J.L.
617	Glycemic and insulinemic responses of nondiabetic
618	healthy adult subjects to an experimental acid-induced
619	viscosity complex incorporated into a glucose beverage.
620	Nutrition 18 (2002), pp. 621-626.
621	Zaninotto, P., Wardle, H., and Stamatakis, E. (on behalf
622	of the Department of Health, UK). Forecasting Obesity to
623	<i>2010</i> (2006) [online]
624	Http://www.dh.gov.uk/en/Publicationsandstatistics/Publica
625	tions/PublicationsStatistics/DH_4138630 (last accessed;
626	May 2011).

TABLES

630 Table 1

631 Subject characteristics

		n	Range	Mean ±	SD
Age (y)		40	18 – 55	30.03 ±	11.21
Sodium Alginate	Lower BF%	9	20 – 31	23.89 ±	4.05
	Upper BF%	11	18 – 51	34.55 ±	10.47
	TOTAL	20	18 – 51	29.75 ±	9.71
Excipient Free	Lower BF%	11	21 – 32	24.00 ±	3.19
	Upper BF%	9	19 – 55	38.00 ±	15.94
	TOTAL	20	19 – 55	30.30 ±	12.78
BMI (kg/m²)		40	18.6 – 39.4	26.02 ±	4.41
Sodium Alginate	Lower BF%	9	21.7 – 24.7	23.34 ±	1.07
	Upper BF%	11	22.7 – 35.2	29.07 ±	3.03
	TOTAL	20	21.7 – 35.2	26.50 ±	3.72
Excipient Free	Lower BF%	11	18.6 – 26.0	22.32 ±	2.33
	Upper BF%	9	23.0 – 35.6	29.47 ±	4.72
	TOTAL	20	18.6 – 39.4	25.54 ±	5.06
Body Fat (BF) %		40	7.1 - 35.6	17.54 ±	7.05
Sodium Alginate	Lower BF%	9	7.1 – 11.9	10.31 ±	1.56
	Upper BF%	11	16.8 – 31.7	22.58 ±	4.94
	TOTAL	20	7.1 – 31.7	17.06 ±	7.29
Excipient Free	Lower BF%	11	9.2 – 15.4	12.76 ±	1.82
	Upper BF%	9	18.1 – 35.6	24.47 ±	5.09
	TOTAL	20	9.2 – 35.6	18.03 ±	6.96

634 FIGURE CAPTIONS

- 635 Figure 1
- 636 Mean delta AUC glycaemia (±1SD)
- 637 Following ingestion of the SA preload (solid line, filled
- 638 diamonds), mean delta AUC glycaemia was reduced by
- 639 52.5% when compared to the EF preload (broken line,
- 640 open squares). There was a significant effect of preload
- 641 treatment type on mean delta AUC (p = .010). In addition,
- 642 preload treatment type had a significant effect (*) on
- 643 mean delta glycaemia at 90 minutes (p < .0005), 150
- 644 minutes (p = .003), 180 minutes (p = .021) and 210
- 645 minutes (p = .013).
- 647 Figure 2
- 648 Mean peak postprandial glycaemia (±1SD)
- 649 There was a significant effect of preload treatment type
- 650 on mean peak postprandial glycaemia (SA solid bars; \underline{M} =
- 651 6.06 \pm .59 mmol/L compared to EF shaded bars; <u>M</u> =
- 652 6.92 ± .70 mmol/L; **p* < .0005).

654 Figure 3

- 655 Mean delta AUC glycaemia by body fat haptile
- 656 When subjects were split by haptiles of body fat % (solid
- 657 line = upper body fat haptile, broken line = lower body fat
- 658 haptile) there was a significant effect of body fat %
- 659 classification ([§]) on mean delta glycaemia at 120 minutes
- (p = .005) 150 minutes (p = .012) 180 minutes (p = .049)
- 661 and 210 minutes (p = .046), irrespective of treatment type
- 662 (solid diamonds = sodium alginate, open squares =
- 663 excipient free).

Figure 2

Preload Treatment Type

Figure 3

