99 research outputs found

    Changes in the 5-HT2(A )receptor system in the pre-mammillary hypothalamus of the ewe are related to regulation of LH pulsatile secretion by an endogenous circannual rhythm

    Get PDF
    BACKGROUND: We wanted to determine if changes in the expression of serotonin 2A receptor (5HT2(A )receptor) gene in the premammillary hypothalamus are associated with changes in reproductive neuroendocrine status. Thus, we compared 2 groups of ovariectomized-estradiol-treated ewes that expressed high vs low LH pulsatility in two different paradigms (2 groups per paradigm): (a) refractoriness (low LH secretion) or not (high LH secretion) to short days in pineal-intact Ile-de-France ewes (RSD) and (b) endogenous circannual rhythm (ECR) in free-running pinealectomized Suffolk ewes in the active or inactive stage of their reproductive rhythm. RESULTS: In RSD ewes, density of 5HT2(A )receptor mRNA (by in situ hybridization) was significantly higher in the high LH group (25.3 ± 1.4 vs 21.4 ± 1.5 grains/neuron, P < 0.05) and (3)H-Ketanserin binding (a specific radioligand) of the median part of the premammillary hypothalamus tended to be higher in the high group (29.1 ± 4.0 vs 24.6 ± 4.2 fmol/mg tissu-equivalent; P < 0.10). In ECR ewes, density of 5HT2(A )receptor mRNA and (3)H-Ketanserin binding were both significantly higher in the high LH group (20.8 ± 1.6 vs 17.0 ± 1.5 grains/neuron, P < 0.01, and 19.7 ± 5.0 vs 7.4 ± 3.4 fmol/mg tissu-equivalent; P < 0.05, respectively). CONCLUSIONS: We conclude that these higher 5HT2(A )receptor gene expression and binding activity of 5HT2(A )receptor in the premammillary hypothalamus are associated with stimulation of LH pulsatility expressed before the development of refractoriness to short days and prior to the decline of reproductive neuroendocrine activity during expression of the endogenous circannual rhythm

    Development of Numerical Algorithms for Practical Com- putation of Nonlinear Normal Modes

    Get PDF
    Abstract When resorting to numerical algorithms, we show that nonlinear normal mode (NNM) computation is possible with limited implementation effort, which paves the way to a practical method for determining the NNMs of nonlinear mechanical systems. The proposed method relies on two main techniques, namely a shooting procedure and a method for the continuation of NNM motions. In addition, sensitivity analysis is used to reduce the computational burden of the algorithm. A simplified discrete model of a nonlinear bladed disk is considered to demonstrate the developments

    Thulium and ytterbium-doped titania thin films deposited by MOCVD

    Get PDF
    In this study we synthesized thin films of titanium oxide doped with thulium and/or ytterbium to modify the incident spectrum on the solar cells. This could be achieved either by photoluminescence up-converting devices, or down-converting devices. As down-converter thin films our work deals with thulium and ytterbium-doped titanium dioxide. Thulium and ytterbium will act as sensitizer and emitter, respectively. The rare-earth doped thin films are deposited by aerosol-assisted MOCVD using organo-metallic precursors such as titanium dioxide acetylacetonate, thulium and ytterbium tetramethylheptanedionate solved in different solvents. These films have been deposited on silicon substrates under different deposition conditions (temperature and dopant concentrations for example). Adherent films have been obtained for deposition temperatures ranging from 300{\deg}C to 600{\deg}C. The deposition rate varies from 0.1 to 1 \mu m/h. The anatase phase is obtained at substrate temperature above 400{\deg}C. Further annealing is required to exhibit luminescence and eliminate organic remnants of the precursors. The physicochemical and luminescent properties of the deposited films were analyzed versus the different deposition parameters and annealing conditions. We showed that absorbed light in the near-UV blue range is re-emitted by the ytterbium at 980 nm and by a thulium band around 800 nm.Comment: 4 pages, 6 figures, proceedin

    SHANK3 controls maturation of social reward circuits in the VTA.

    Get PDF
    Haploinsufficiency of SHANK3, encoding the synapse scaffolding protein SHANK3, leads to a highly penetrant form of autism spectrum disorder. How SHANK3 insufficiency affects specific neural circuits and how this is related to specific symptoms remains elusive. Here we used shRNA to model Shank3 insufficiency in the ventral tegmental area of mice. We identified dopamine (DA) and GABA cell-type-specific changes in excitatory synapse transmission that converge to reduce DA neuron activity and generate behavioral deficits, including impaired social preference. Administration of a positive allosteric modulator of the type 1 metabotropic glutamate receptors mGluR1 during the first postnatal week restored DA neuron excitatory synapse transmission and partially rescued the social preference defects, while optogenetic DA neuron stimulation was sufficient to enhance social preference. Collectively, these data reveal the contribution of impaired ventral tegmental area function to social behaviors and identify mGluR1 modulation during postnatal development as a potential treatment strategy

    Reactor Modeling of a Slurry Bubble Column for Fischer-Tropsch Synthesis

    No full text
    A complete reactor model was developed for a slurry bubble column for Fischer-Tropsch synthesis in taking into account the hydrodynamic features of the three phases (syngas, liquid mixture of linear paraffins and solid catalyst) and including thermodynamics and heat and mass transfers. This model was also able to take into account the gas recycle after condensation steps. Simulation results were compared with industrial data coming from a demonstration unit
    corecore