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Abstract
When resorting to numerical algorithms, we show that nonlinear normal mode (NNM) computation is possi-
ble with limited implementation effort, which paves the wayto a practical method for determining the NNMs
of nonlinear mechanical systems. The proposed method relies on two main techniques, namely a shooting
procedure and a method for the continuation of NNM motions. In addition, sensitivity analysis is used to
reduce the computational burden of the algorithm. A simplified discrete model of a nonlinear bladed disk is
considered to demonstrate the developments.

1 Introduction

Nonlinear normal modes (NNMs) offer a solid theoretical andmathematical tool for interpreting a wide
class of nonlinear dynamical phenomena, yet they have a clear and simple conceptual relation to the LNMs
[1, 2, 3]. However, most structural engineers still view NNMs as a concept that is foreign to them, and they
do not yet consider NNMs as a useful concept for structural dynamics. One reason supporting this statement
is that most existing constructive techniques for computing NNMs are based on asymptotic approaches and
rely on fairly involved mathematical developments.

There have been very few attempts to compute NNMs using numerical methods [4, 5, 6, 7]. Algorithms for
the continuation of periodic solutions are really quite sophisticated and advanced (see, e.g., [8, 9, 10]), and
they have been extensively used for computing the forced response and limit cycles of nonlinear dynamical
systems (see, e.g., [11]). Interestingly, they have not been fully exploited for the computation of nonlinear
modes.

The objective of this paper is to support that these numerical algorithms pave the way for an effective and
practical computation of NNMs. In the present paper, we showthat the NNM computation is possible
with limited implementation effort. The proposed algorithm, implemented in MATLAB, relies on two main
techniques, namely a shooting procedure and a method for thecontinuation of NNM motions. The algorithm
is demonstrated using a simplified discrete model of a nonlinear bladed disk.

2 Nonlinear Normal Modes (NNMs)

A detailed description of NNMs and their fundamental properties (e.g., frequency-energy dependence, bifur-
cations and stability) is given in [1, 2, 3]. For completeness, the two main definitions of an NNM are briefly
reviewed in this section.
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The free response of discrete conservative mechanical systems withn degrees of freedom (DOFs) is consid-
ered, assuming that continuous systems (e.g., beams, shells or plates) have been spatially discretized using
the finite element method. The equations of motion are

Mẍ(t) + Kx(t) + fnl {x(t), ẋ(t)} = 0 (1)

whereM is the mass matrix;K is the stiffness matrix;x, ẋ and ẍ are the displacement, velocity and
acceleration vectors, respectively;fnl is the nonlinear restoring force vector.

There exist two main definitions of an NNM in the literature due to Rosenberg and Shaw and Pierre:

1. Targeting a straightforward nonlinear extension of the linear normal mode (LNM) concept, Rosenberg
defined an NNM motion as avibration in unisonof the system (i.e., a synchronous periodic oscilla-
tion).

2. To provide an extension of the NNM concept to damped systems, Shaw and Pierre defined an NNM as
a two-dimensional invariant manifold in phase space. Such amanifold is invariant under the flow (i.e.,
orbits that start out in the manifold remain in it for all time), which generalizes the invariance property
of LNMs to nonlinear systems.

At first glance, Rosenberg’s definition may appear restrictive in two cases. Firstly, it cannot be easily ex-
tended to nonconservative systems. However, the damped dynamics can often be interpreted based on the
topological structure of the NNMs of the underlying conservative system [3]. Secondly, in the presence of
internal resonances, the NNM motion is no longer synchronous, but it is still periodic.

In the present study, an NNM motion is therefore defined as a(non-necessarily synchronous) periodic motion
of the conservative mechanical system (1). As we will show, this extended definition is particularly attractive
when targeting a numerical computation of the NNMs. It enables the nonlinear modes to be effectively
computed using algorithms for the continuation of periodicsolutions.

3 Numerical Computation of NNMs

The numerical method proposed here for the NNM computation relies on two main techniques, namely a
shooting technique and the pseudo-arclength continuationmethod. A detailed description of the algorithm
is given in [12].

3.1 Shooting Method

The equations of motion of system (1) can be recast into statespace form

ż = g(z) (2)

wherez = [x∗ ẋ∗]∗ is the2n-dimensional state vector, and star denotes the transpose operation, and

g(z) =
(

ẋ
−M−1 [Kx + fnl(x, ẋ)]

)
(3)

is the vector field. The solution of this dynamical system forinitial conditionsz(0) = z0 = [x∗0 ẋ∗0]
∗ is

written asz(t) = z (t, z0) in order to exhibit the dependence on the initial conditions, z (0, z0) = z0. A
solutionzp(t, zp0) is a periodic solution of the autonomous system (2) ifzp(t, zp0) = zp(t + T, zp0), where
T is the minimal period.
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The NNM computation is carried out by finding the periodic solutions of the governing nonlinear equations
of motion (2). In this context, theshooting methodis probably the most popular numerical technique. It
solves numerically the two-point boundary-value problem defined by the periodicity condition

H(zp0, T ) ≡ zp(T, zp0)− zp0 = 0 (4)

H(z0, T ) = z(T, z0) − z0 is called theshooting functionand represents the difference between the initial
conditions and the system response at timeT . Unlike forced motion, the periodT of the free response is not
known a priori.

The shooting method consists in finding, in an iterative way,the initial conditionszp0 and the periodT that
realize a periodic motion. To this end, the method relies on direct numerical time integration and on the
Newton-Raphson algorithm.

Starting from some assumed initial conditionsz(0)
p0 , the motionz(0)

p (t, z(0)
p0 ) at the assumed periodT (0) can

be obtained by numerical time integration methods (e.g., Runge-Kutta or Newmark schemes). In general, the
initial guess(z(0)

p0 , T (0)) does not satisfy the periodicity condition (4). A Newton-Raphson iteration scheme

is therefore to be used to correct an initial guess and to converge to the actual solution. The corrections∆z(k)
p0

and∆T (k) at iterationk are found by expanding the nonlinear function

H
(
z(k)

p0 + ∆z(k)
p0 , T (k) + ∆T (k)

)
= 0 (5)

in Taylor series and neglecting higher-order terms (H.O.T.).

The phase of the periodic solutions is not fixed. Ifz(t) is a solution of the autonomous system (2), then
z(t + ∆t) is geometrically the same solution in state space for any∆t. Hence, an additional condition,
termed thephase condition, has to be specified in order to remove the arbitrariness of the initial conditions.
This is discussed in detail in [12].

In summary, an isolated NNM is computed by solving the augmented two-point boundary-value problem
defined by

F(zp0, T ) ≡
{

H(zp0, T ) = 0
h(zp0) = 0

(6)

whereh(zp0) = 0 is the phase condition.

3.2 Continuation of Periodic Solutions

Due to the frequency-energy dependence, the modal parameters of an NNM vary with the total energy. An
NNM family, governed by equations (6), therefore traces a curve, termed an NNM branch, in the(2n +
1)-dimensional space of initial conditions and period(zp0, T ). Starting from the corresponding LNM at
low energy, the computation is carried out by finding successive points(zp0, T ) of the NNM branch using
methods for thenumerical continuationof periodic motions (also calledpath-following methods) [8, 9]. The
space(zp0, T ) is termed the continuation space.

Different methods for numerical continuation have been proposed in the literature. The so-called pseudo-
arclength continuation method is used herein.

Starting from a known solution(zp0,(j), T(j)), the next periodic solution(zp0,(j+1), T(j+1)) on the branch is
computed using apredictor stepand acorrector step.

Predictor step
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At stepj, a prediction(z̃p0,(j+1), T̃(j+1)) of the next solution(zp0,(j+1), T(j+1)) is generated along the tan-
gent vector to the branch at the current pointzp0,(j)[

z̃p0,(j+1)

T̃(j+1)

]
=

[
zp0,(j)

T(j)

]
+ s(j)

[
pz,(j)

pT,(j)

]
(7)

wheres(j) is the predictor stepsize. The tangent vectorp(j) = [p∗z,(j) pT,(j)]∗ to the branch defined by (6) is
solution of the system ∂H

∂zp0

∣∣∣
(zp0,(j) ,T(j))

∂H
∂T

∣∣
(zp0,(j),T(j))

∂h
∂zp0

∗∣∣∣
(zp0,(j))

0

 [
pz,(j)

pT,(j)

]
=

[
0
0

]
(8)

with the condition
∥∥p(j)

∥∥ = 1. The star denotes the transpose operator. This normalization can be taken
into account by fixing one component of the tangent vector andsolving the resulting overdetermined system
using the Moore-Penrose matrix inverse; the tangent vectoris then normalized to 1.

Corrector step

The prediction is corrected by a shooting procedure in orderto solve (6) in which the variations of the initial
conditions and the period are forced to be orthogonal to the predictor step. At iterationk, the corrections

z(k+1)
p0,(j+1) = z(k)

p0,(j+1) + ∆z(k)
p0,(j+1)

T
(k+1)
(j+1) = T

(k)
(j+1) + ∆T

(k)
(j+1) (9)

are computed by solving the overdetermined linear system using the Moore-Penrose matrix inverse
∂H
∂zp0

∣∣∣
(z

(k)
p0,(j+1)

,T
(k)
(j+1)

)

∂H
∂T

∣∣
(z

(k)
p0,(j+1)

,T
(k)
(j+1)

)

∂h
∂zp0

∗∣∣∣
(z

(k)
p0,(j+1)

)
0

p∗z,(j) pT,(j)


[

∆z(k)
p0,(j+1)

∆T
(k)
(j+1)

]
=

 −H(z(k)
p0,(j+1), T

(k)
(j+1))

−h(z(k)
p0,(j+1))
0

 (10)

where the prediction is used as initial guess, i.e,z(0)
p0,(j+1) = z̃p0,(j+1) andT

(0)
(j+1) = T̃(j+1). The last equation

in (10) corresponds to the orthogonality condition for the corrector step.

This iterative process is carried out until convergence is achieved. The convergence test is based on the
relative error of the periodicity condition:

‖H(zp0, T )‖
‖zp0‖ =

‖zp(T, zp0)− zp0‖
‖zp0‖ < ǫ (11)

whereǫ is the prescribed relative precision.

3.3 Sensitivity Analysis

Each shooting iteration involves the time integration of the equations of motion to evaluate the current shoot-

ing residueH
(
z(k)

p0 , T (k)
)

= z(k)
p (T (k), z(k)

p0 ) − z(k)
p0 . As evidenced by equation (10), the method also

requires the evaluation of the2n× 2n Jacobian matrix

∂H
∂z0

(z0, T ) =
∂z(t, z0)

∂z0

∣∣∣∣
t=T

− I (12)
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whereI is the2n× 2n identity matrix.

The classical finite-difference approach requires to perturb successively each of the2n initial conditions
and integrate thenonlinear governing equations of motion. This approximate method therefore relies on
extensive numerical simulations and may be computationally intensive for large-scale finite element models.

Targeting a reduction of the computational cost, a significant improvement is to use sensitivity analysis
for determining∂z(t, z0)/∂z0 instead of a numerical finite-difference procedure. The sensitivity analysis
consists in differentiating the equations of motion (2) with respect to the initial conditionsz0 which leads to

d

dt

[
∂z (t, z0)

∂z0

]
=

∂g(z)
∂z

∣∣∣∣
z(t,z0)

[
∂z(t, z0)

∂z0

]
(13)

with
∂z(0, z0)

∂z0
= I (14)

sincez(0, z0) = z0. Hence, the matrix∂z(t, z0)/∂z0 at t = T can be obtained by numerically integrating
overT the initial-value problem defined by thelinear ordinary differential equations (ODEs) (13) with the
initial conditions (14).

In addition to the integration of the current solutionz(t,x0) of (2), these two methods for computing
∂z(t, z0)/∂z0 require2n numerical integrations of2n-dimensional dynamical systems, which may be com-
putationally intensive for large systems. However, equations (13) are linear ODEs and their numerical inte-
gration is thus less expensive. The numerical cost can be further reduced if the solution of equations (13) is
computed together with the solution of the nonlinear equations of motion in a single numerical simulation
[13].

The sensitivity analysis requires only one additional iteration at each time step of the numerical time inte-
gration of the current motion to provide the Jacobian matrix. The reduction of the computational cost is
therefore significant for large-scale finite element models. In addition, the Jacobian computation by means
of the sensitivity analysis is exact. The convergence troubles regarding the chosen perturbations of the finite-
difference method are then avoided. Hence, the use of sensitivity analysis to perform the shooting procedure
represents a meaningful improvement from a computational point of view.

As the monodromy matrix∂zp(T, zp0)/∂zp0 is computed, its eigenvalues, the Floquet multipliers, areob-
tained as a by-product, and the stability analysis of the NNMmotions can be performed in a straightforward
manner.

3.4 Algorithm for NNM Computation

The algorithm proposed for the computation of NNM motions isa combination of shooting and pseudo-
arclength continuation methods, as shown in Figure 1. It hasbeen implemented in the MATLAB environ-
ment. Other features of the algorithm such as the step control, the reduction of the computational burden and
the method used for numerical integration of the equations of motion are discussed in [12].

So far, the NNMs have been considered as branches in the continuation space(zp0, T ). An appropriate
graphical depiction of the NNMs is to represent them in a frequency-energy plot (FEP). This FEP can be
computed in a straightforward manner: (i) the conserved total energy is computed from the initial conditions
realizing the NNM motion; and (ii) the frequency of the NNM motion is calculated directly from the period.

4 Numerical Experiment - Nonlinear Bladed Disk System

The NNM computation method is now demonstrated using a simplified mathematical model of a nonlinear
bladed disk assembly. The lumped parameter model admits a single degree of freedom for each blade and
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(k)
p0,(j+1))
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p0,(j+1) = z

(k)
p0,(j+1) + ∆z
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T(j+1) = T
(k)
(j+1)

zp0,(j+1) = z
(k)
p0,(j+1)

j = j + 1

Next NNM motion
on the branch:

Figure 1: Algorithm for NNM computation.

includes a similarly simplified representation of the flexible disk. The bladed disk is composed of30 sectors
assembled with cyclic periodicity; a single sector is represented in Figure 2. Each sector is modeled using
disk (M ) and blade (m) lumped masses, coupled by linear (k) and cubic (knl) springs. The nonlinear springs
can, for instance, be representative of geometrically nonlinear effects in slender blades. The disk masses are
connected together by linear springsK. The equations of motion of this60-DOF system are

m ẍi + k(xi −Xi) + knl(xi −Xi)3 = 0
M Ẍi + K(Xi −Xi+1) + K(Xi −Xi−1) + k(Xi − xi) + knl(Xi − xi)3 = 0 (15)

for i = 1, . . . , 30; X31 = X1, X0 = X30 (conditions of cyclic periodicity).Xi andxi are the displacements
of the disk and blade masses of theith sector, respectively. The valuesM = 1, m = 0.3, K = 1, k = 1,
knl = 0.1 are used in this study.
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Figure 2: One sector of the nonlinear bladed disk assembly. (a) continuous structure; (b) discrete model.

Mode Nodal Nodal Freq. Mode Nodal Nodal Freq.
circles diameters (rad/s) circles diameters (rad/s)

1 0 0 0.000 31 1 0 2.082
2,3 0 1 0.183 32,33 1 1 2.084
4,5 0 2 0.363 34,35 1 2 2.092
6,7 0 3 0.536 36,37 1 3 2.104
8,9 0 4 0.700 38,39 1 4 2.123

10,11 0 5 0.850 40,41 1 5 2.147
12,13 0 6 0.985 42,43 1 6 2.178
14,15 0 7 1.103 44,45 1 7 2.215
16,17 0 8 1.202 46,47 1 8 2.258
18,19 0 9 1.282 48,49 1 9 2.304
20,21 0 10 1.346 50,51 1 10 2.350
22,23 0 11 1.394 52,53 1 11 2.394
24,25 0 12 1.428 54,55 1 12 2.431
26,27 0 13 1.452 56,57 1 13 2.460
28,29 0 14 1.465 58,59 1 14 2.478

30 0 15 1.470 60 1 15 2.485

Table 1: Natural frequencies of the underlying linear bladed assembly.

4.1 Modal Analysis of the Underlying Linear System

Before studying the nonlinear bladed disk assembly, the natural frequencies and mode shapes of the under-
lying linear system are first discussed. All bladed assemblies with circumferential symmetry exhibit certain
well-defined types of vibration mode [14]. A key feature is the existence of two types of mode,singleand
double:

• The modes that occur in pair represent the majority. They have the same natural frequency and similar
mode shapes. In fact, no unique mode shapes can be specified for these modes. Rather, it is sufficient to
specify two suitably orthogonal shapes and to note that, when vibrating freely at that natural frequency,
the structure can assume any form given by a linear combination of the two specified shapes. The mode
shape is characterized by nnodal diameterssince the displacement is constrained to be zero along n-
equally spaced diametral lines. The mode shapes of a mode pair have mutually orthogonal nodal
diameters.

• The assembly also possesses a smaller number of single modes. They correspond to motion with all
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Figure 3: Representative LNMs of the bladed assembly; the blade and disk masses are shown in black and
grey, respectively. One mode of the mode pair (a) (0,1); (b) (0,15); (c) (1,5) and (d) (1,14).

the blades having the same amplitude of motion, either in phase with each other (0 nodal diameter) or
out of phase with their neighbors (N/2 nodal diameters).

The natural frequencies of the underlying linear bladed assembly are listed in Table 1. In this table, the
modes are denoted by the integer pair (n,m), which corresponds to the number of nodal circles and nodal
diameters for the considered mode, respectively. In the model (15), the nodal circle parametern can only
take the valuesn = 0 or n = 1, according to whether the blade and disk masses undergo in-phase or out-
of-phase motion, respectively. One observes the existenceof 28 pairs of double modes and 4 single modes.
Figure 3 depicts four representative LNMs of the bladed assembly, namely mode (0,15) and one mode of the
mode pairs (0,1), (1,5) and (1,14).

4.2 Nonlinear Normal Modes (NNMs)

Modal analysis of the nonlinear bladed assembly is carried out in this section using the previously described
algorithm. Starting from the corresponding LNMs at low energy and gradually increasing the total energy
in the system, NNM branches are computed. These branches, termed backbone branches, are represented in
Figure 4 and form the skeleton of the FEP. As we shall see, other NNM branches bifurcate from and coalesce
into these backbone branches.

The first noticeable feature in Figure 4 is the frequency-energy dependence of the NNMs. The oscillation
frequency of the modes with 1 nodal circle is strongly affected by the nonlinearities in the system. For these
modes, the blade and disk masses vibrate in an out-of-phase fashion, which enhances nonlinear effects. On
the other hand, the oscillation frequency of the modes with 0nodal circle is much less affected. This is
because the blade and disk masses vibrate in an in-phase fashion for these modes.

4.2.1 Similar and Nonsimilar NNMs

In addition to the dependence of their oscillation frequency, the NNMs may also have their modal shapes that
vary with the total energy in the system. According to Rosenberg’s terminology [15], a similar NNM corre-
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Figure 4: Evolution of the NNM frequencies with the total energy in the system.

sponds to an (energy-independent) straight modal line in the configuration space and occurs only in systems
presenting certain spatial symmetries. A nonsimilar NNM corresponds to a curve in the configuration space,
the shape of which varies with the total energy. Due to its symmetry properties, the system possesses both
similar and nonsimilar NNMs. Two examples of similar NNMs inthe bladed disk are the nonlinear extension
of the LNMs with 0 nodal diameters, namely modes (0,0) and (1,0). Mode (0,0) is a rigid-body mode, which
is obviously unaffected by nonlinearity. The FEP of mode (1,0) in Figure 5 clearly depicts that, while the
NNM frequency is altered by the nonlinearities in the system, the modal shape remains unchanged.

Nonsimilar NNMs resemble the corresponding LNMs at low energy. The structure (i.e., the number of
nodal circles and diameters) is preserved, and, as for the modes of the linear system, they mostly appear in
pair. Nonsimilar NNMs in this system are either weakly, moderately or strongly affected by nonlinearity for
increasing energy levels:

• Figure 6 represents a mode of the mode pair (0,2), whose shapeis almost energy-independent.

• Figure 7 shows that the NNM motions of mode pair (0,14) have a marked energy dependence.

• A remarkable property of the NNM motions of mode (1,14) is that the vibrational energy localizes
to a limited number of sectors, the remaining of the system being virtually motionless (see Figure
8). The resulting spatial confinement of the energy causes the responses of some blades to become
dangerously high and might lead to premature high cycle fatigue of the blades. For illustration, the time
series corresponding to such an NNM motion are displayed in Figure 9. This localization phenomenon
was also observed in linear mistuned bladed assemblies [16], but, here, it occurs even in the absence of
structural disorder. It results from the frequency-energydependence inherent to nonlinear oscillations
and is discussed in detail in references [17, 18, 19].

4.2.2 Modal Interaction: Internally Resonant NNMs

When carrying out the NNM computation at higher energies, other resonance scenarios can be observed
through the occurrence of tongues of internally resonant NNMs. Unlike backbone branches, tongues are
localized to a specific region of the FEP. They bifurcate froma backbone branch of a specific mode and
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Figure 5: FEP of mode (1,0). NNM represented by bar graphs areinset; they are given in terms of the initial
displacements that realize the periodic motion (with zero initial velocities assumed). The blade and disk
masses are shown in black and grey, respectively.
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Figure 6: FEP of one mode of the mode pair (0,2). NNM represented by bar graphs are inset; they are given
in terms of the initial displacements that realize the periodic motion (with zero initial velocities assumed).
The blade and disk masses are shown in black and grey, respectively.
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Figure 9: Time series corresponding to the localized NNM motion of mode (1,14) (see Figure 8).

coalesce into the backbone branch of another mode, thereby realizing an internal resonance between the two
modes. For instance, Figure 10 depicts a 3:1 internal resonance between modes (0,6) and (1,12) in the FEP.
To better understand the resonance mechanism, the backboneof mode (1,12) is represented at the third of its
characteristic frequency (this is relevant, because a periodic solution of periodT is also periodic with period
3T ). This demonstrates that a smooth transition from mode (0,6) to mode (1,12) occurs on the tongue. A
further illustration is that motions M1 and M2, which are themotions right after and before the coalescence
of the two NNM branches, are almost identical.

During this 3:1 internal resonance, the system vibrates along a subharmonic NNM; i.e., an NNM motion
characterized by more than one dominant frequency component. On the branch of mode (0,6), the motion is
characterized by one dominant frequency component, sayω. As we move along the tongue from this branch,
a third harmonic progressively appears, and the system vibrates with two dominant frequency components
ω and3ω. As we progress further on the tongue, the third harmonic tends to dominate the component at the
fundamental frequency, until this latter completely disappears. At this precise moment, a transition to mode
(1,12) is realized. This transition is illustrated in Figure 11 using time series representative of the NNM
motion at three different locations on the tongue.

Surprisingly, the ratio of the linear natural frequencies of modes (0,6) and (1,12) is far from 3; it is equal to
2.47. A 3:1 internal resonance between the two modes can still be realized, because the frequency of mode
(0,6) increases much less rapidly than that of mode (1,12), as shown in Figure 4. This clearly highlights
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Figure 11: Time series corresponding to NNM motions on the tongue of 3:1 internal resonance (solid line:
blade 1; dashed line: disk 10; dotted line: disk 14). (a) Beginning of the tongue (in the vicinity of the branch
of mode (0,6)); (b) middle of the tongue; and (c) extremity ofthe tongue (in the vicinity of the branch of
mode (1,12)).
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thatNNMs can be internally resonant without necessarily havingcommensurate linear natural frequencies,
a feature that is rarely discussed in the literature. Another interesting finding is thatthere is a countable
infinity of branches of internally resonant NNMs in this system, similar to what was reported for a 2DOF
system in [3, 12].

By means of the sensitivity analysis, the computation of thebranch depicted in Figure 10 requires 1 minute
using a 2GHz processor. The finite-difference approach is computationally intensive and demands 15 min-
utes. Therefore, the sensitivity analysis significantly reduces the computational cost of the algorithm. This
is an important feature when targeting a computationally tractable calculation of the NNMs. Due to the
presence of turning points, the computation of the tongue inFigure 10 demands most of the CPU time.

Besides the NNMs described here, additional modes exist. Inparticular, NNM motions which take the form
of traveling waves occur. They are represented by ellipses in the configuration space. A detailed analytical
study of these modes is given in reference [20]. The examination of these additional modes is beyond the
scope of this paper and will be addressed in subsequent studies [21].

5 Conclusion

In this paper, a numerical method for the computation of NNMsof mechanical structures was introduced.
The approach targets the computation of the undamped modes of structures discretized by finite elements and
relies on the continuation of periodic solutions. The procedure was demonstrated using a simplified discrete
model of a nonlinear bladed disk, and the NNMs were computed accurately in a fairly automatic manner.
Complicated NNM motions were also observed, including a countable infinity of internal resonances and
strong motion localization.

This method represents a first step toward a practical NNM computation with limited implementation effort.
However, two important issues must be addressed adequatelyto develop a robust method capable of dealing
with large, three-dimensional structures:

• (i) Fundamental NNMs with no linear counterparts (i.e., those that are not the direct extension of the
LNMs) have not been discussed herein. These additional NNMsbifurcate from other modes, and a
robust branch switching strategy will be developed for their computation.

• (ii) The method relies on extensive numerical simulations and may be computationally intensive for
large-scale finite element models. As a result, a further reduction of the computational cost is the next
objective. To this end, a significant improvement was to use sensitivity analysis to obtain the Jacobian
matrix as a by-product of the time integration of the currentmotion. An automatic time step control,
which selects the most appropriate time step in view of the current dynamics, will also be considered
to speed up the computations.
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[11] C. Touzé, A. Amabili, O. Thomas,Reduced-order models for large-amplitude vibrations of shells in-
cluding in-plane inertia, In Proceedings of the EUROMECH Colloquium on Geometrically Nonlinear
Vibrations, Porto, Portugal, July 2007, Porto (2007).
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