484 research outputs found

    High frequency homogenisation for elastic lattices

    Full text link
    A complete methodology, based on a two-scale asymptotic approach, that enables the homogenisation of elastic lattices at non-zero frequencies is developed. Elastic lattices are distinguished from scalar lattices in that two or more types of coupled waves exist, even at low frequencies. Such a theory enables the determination of effective material properties at both low and high frequencies. The theoretical framework is developed for the propagation of waves through lattices of arbitrary geometry and dimension. The asymptotic approach provides a method through which the dispersive properties of lattices at frequencies near standing waves can be described; the theory accurately describes both the dispersion curves and the response of the lattice near the edges of the Brillouin zone. The leading order solution is expressed as a product between the standing wave solution and long-scale envelope functions that are eigensolutions of the homogenised partial differential equation. The general theory is supplemented by a pair of illustrative examples for two archetypal classes of two-dimensional elastic lattices. The efficiency of the asymptotic approach in accurately describing several interesting phenomena is demonstrated, including dynamic anisotropy and Dirac cones.Comment: 24 pages, 7 figure

    Field Pattern computation using 2 - D FFT for Microstrip Reflectarray Antenna

    Get PDF
    A Microstrip Reflectarray antenna as a planar array antenna is examined in this study effort. The basic original design requires that the phase of the field reflected from a Microstrip Reflectarray element be set so that the overall phase delay from the feed to a fixed aperture plane in front of the Reflectarray is constant for all elements. The array factor and element pattern product are displayed in the overall electric field pattern expression. The arrangement of Microstrip Reflectarray antenna and feed has been placed in prime focal axis. Amplitude tapering is used to improve the main beam's field strength by lowering the side lobe levels. The comparative numerical analysis of computing field pattern normally as well as using 2-D FFT of n x n elements of the Microstrip reflectarray antenna is carried out using MATLAB codes. It is shown that MATLAB simulation time with FFT is much shorter than simulation time without FFT

    In situ XRD studies of the effect of catalyst pre-treatment strategies on the bulk structure and performance of Mo-V-Te-Nb catalysts for selective oxidation of propane.

    No full text
    Current research efforts are concentrated towards utilizing propane rather than propylene as the feedstock in the industrial process for producing acrylic acid because of its significant lower price. The discovery of the MoVTe family of catalysts has brought this goal within sight. This study investigates the effect of different calcination protocols using in situ XRD. A series of catalyst precursors were treated at different calcination temperatures and atmospheres, while analysing their structures with XRD. The conditions necessary for crystallization of known active phases were determined. The activity of the same catalysts was also tested using a nanoflow high throughput reactor. A structure – activity study leads to correlations between synthesis, phase equilibria and performance of these Mo-V-Te-Nb catalysts for selective oxidation of propane

    Oxy-functionalization of olefins with neat and heterogenized binuclear V(IV)O and Fe(II) complexes: effect of steric hindrance on product selectivity and output in homogeneous and heterogeneous phase

    Get PDF
    Neat {[VO(sal2bz)]2; [Fe(sal2bz)(H2O)2]2·2H2O} and zeolite-Y immobilized {[VO(sal2bz)]2-Y; [Fe(sal2bz)(H2O)2]2-Y} binuclear complexes have been prepared and characterized by spectroscopic techniques (IR, UV–vis), elemental analyses (CHN, ICP-OES), thermal study (TGA), scanning electron micrograph (SEM), adsorption study (BET) and X-ray diffraction (XRD) patterns. Neat (homogeneous) and immobilized (heterogeneous) complexes were employed as catalysts in the oxidation of olefins, namely, cyclohexene, limonene and α-pinene in the presence of 30% hydrogen peroxide. 100% conversion of cyclohexene and α-pinene was obtained while limonene was oxidized up to 90%. Homogeneous catalysts showed highly selective result as neat [VO(sal2bz)]2 complex has provided 87% cyclohexane-1,2-diol and neat [Fe(sal2bz)(H2O)2]2·2H2O complex has provided 79% verbenone in oxidation of cyclohexene and α-pinene, respectively. We have observed that due to steric hindrance, formation of olefinic oxidation products increases on moving from α-pinene to limonene and limonene to cyclohexene. Additionally. recovered heterogeneous catalysts showed intact results up to two consecutive runs. Probable catalytic mechanism has been proposed for oxidation of cyclohexene

    Measurement of (n,γ) reaction cross section of 186W-isotope at neutron energy of 20.02±0.58 MeV

    Get PDF
    The cross-section of 186W(n,γ)187W reaction has been measured at an average neutron energy of 20.02±0.58 MeV by using activation technique. The 27Al(n,α)24Na and 115In(n,n´)115mIn reactions have been used for absolute neutron flux measurement. Theoretically the reaction cross-sections have been calculated by using the TALYS-1.9 code. The results from the present work and the EXFOR based literature data have been compared with the evaluated data and calculated data from TALYS-1.9 code

    Measurement of (n,γ) reaction cross section of 186W-isotope at neutron energy of 20.02±0.58 MeV

    Get PDF
    392-396The cross-section of 186W(n,γ)187W reaction has been measured at an average neutron energy of 20.02±0.58 MeV by using activation technique. The 27Al(n,α)24Na and 115In(n,n´)115mIn reactions have been used for absolute neutron flux measurement. Theoretically the reaction cross-sections have been calculated by using the TALYS-1.9 code. The results from the present work and the EXFOR based literature data have been compared with the evaluated data and calculated data from TALYS-1.9 code

    Aptamer-based radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of epithelial tumors

    Get PDF
    In the continuous search for earlier diagnosis and improved therapeutic modalities against cancer, based on our constantly increasing knowledge of cancer biology, aptamers hold the promise to expand on current antibody success, but overcoming some of the problems faced with antibodies as therapeutic or delivery agents in cancer. However, as the first aptamer reached the market as an inhibitor against angiogenesis for the treatment of macular degeneration, aptamers have found only limited applications or interest in oncology, and even less as radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of tumours. Yet, the chemistry for the labelling of aptamers and the options to alter their pharmacokinetic properties, to make them suitable for use as radiopharmaceuticals is now available and recent advances in their development can demonstrate that these molecules would make them ideal delivery vehicles for the development of targeted radiopharmaceuticals that could deliver their radiation load with accuracy to the tumour site, offering improved therapeutic properties and reduced side effects

    Measurements of 181Ta(n,2n)180Ta reaction cross-section at the neutron energy of 14.78 MeV

    Get PDF
    The cross-section of the 181Ta(n,2n)180Ta reaction has been measured with respect to the 197Au(n,2n)196Au monitor reaction at the incident neutron energy of 14.78± 0.20 MeV, using neutron activation analysis and off-line γ-ray spectrometric technique. The present measurement has been done at the energy where discrepant measured results are available in the EXFOR data library. The result has been compared with evaluated data libraries JEFF-3.3 and ENDF/B-VII.1. The present result has also been supported by theoretical predictions of nuclear model code TALYS1.8 and TALYS-1.9. The uncertainty and the correlations among the measured cross-section has been studied using co-variance analysis

    Dangers of using the edges of the Brillouin zone

    No full text
    International audienceIn solid-state physics, including photonics and wherever periodic lattice structures occur, it is essential to establish the fundamental features associated with wave propagation through the lattice: This is achieved using Bloch waves, the reciprocal lattice, and the reduction, using periodicity, to consider the irreducible Brillouin zone. A general approach, although widely accepted as not being perfectly legitimate, is to plot the dispersion relations around the edges of the Brillouin zone. We show definitively that this can be dangerous and that an important mode of practical significance is missed if this is done in too cavalier a fashion: This missing mode is illustrated for the design of endoscopes based on spring-mass (discrete) periodic structures and photonic crystals
    corecore