1,467 research outputs found

    Entropy and Correlations in Lattice Gas Automata without Detailed Balance

    Full text link
    We consider lattice gas automata where the lack of semi-detailed balance results from node occupation redistribution ruled by distant configurations; such models with nonlocal interactions are interesting because they exhibit non-ideal gas properties and can undergo phase transitions. For this class of automata, mean-field theory provides a correct evaluation of properties such as compressibility and viscosity (away from the phase transition), despite the fact that no H-theorem strictly holds. We introduce the notion of locality - necessary to define quantities accessible to measurements - by treating the coupling between nonlocal bits as a perturbation. Then if we define operationally ``local'' states of the automaton - whether the system is in a homogeneous or in an inhomogeneous state - we can compute an estimator of the entropy and measure the local channel occupation correlations. These considerations are applied to a simple model with nonlocal interactions.Comment: 13 pages, LaTeX, 5 PostScript figures, uses psfig. Submitted to Int. J. Mod. Phys.

    Alphafoetoprotein uptake by cloned cell lines derived from a nickel-induced rat rhabdomyosarcoma.

    Get PDF
    Rat, mouse, pig and chicken alphafoetoproteins (AFP), rat serum albumin and egg albumin, or their fluoresceinated conjugates were added to cultures of several cloned cell lines isolated from a nickel-induced rat rhabdomyosarcoma. The intracellular uptake of assayed proteins was revealed by the indirect immunoperoxidase technique and/or by direct fluorescence microscopy. All the clones examined bound AFP, and all but one internalized the protein. The protein localized in the membrane and the cytoplasm, as well as along straight processes interconnecting cells. Nuclei were always AFP negative. The protein uptake of fluoresceinated conjugates of AFP and serumalbumin was already visible 15 min after incubation and progressed with time to reach a plateau 4-5 h later. Ultrastructural radioautographs of cells incubated with [3H]-AFP (rat) showed protein accumulation in several organelles and particularly in lipid droplets. Parallel to these observations, the intracellular presence of AFP within myofibrillar structures was demonstrated in tongue sections of rat foetuses and neonates. The results presented here provide experimental evidence of the reappearance in cloned cell lines derived from a primary rhabdomyosarcoma of a property pertaining to foetal striated muscle

    Electric-field tuning of the valley splitting in silicon corner dots

    Get PDF
    We perform an excited state spectroscopy analysis of a silicon corner dot in a nanowire field-effect transistor to assess the electric field tunability of the valley splitting. First, we demonstrate a back-gate-controlled transition between a single quantum dot and a double quantum dot in parallel that allows tuning the device in to corner dot formation. We find a linear dependence of the valley splitting on back-gate voltage, from 880 μeV880~\mu \text{eV} to 610 μeV610~\mu \text{eV} with a slope of −45±3 μeV/V-45\pm 3~\mu \text{eV/V} (or equivalently a slope of −48±3 μeV/(MV/m)-48\pm 3~\mu \text{eV/(MV/m)} with respect to the effective field). The experimental results are backed up by tight-binding simulations that include the effect of surface roughness, remote charges in the gate stack and discrete dopants in the channel. Our results demonstrate a way to electrically tune the valley splitting in silicon-on-insulator-based quantum dots, a requirement to achieve all-electrical manipulation of silicon spin qubits.Comment: 5 pages, 3 figures. In this version: Discussion of model expanded; Fig. 3 updated; Refs. added (15, 22, 32, 34, 35, 36, 37

    Real-space Manifestations of Bottlenecks in Turbulence Spectra

    Full text link
    An energy-spectrum bottleneck, a bump in the turbulence spectrum between the inertial and dissipation ranges, is shown to occur in the non-turbulent, one-dimensional, hyperviscous Burgers equation and found to be the Fourier-space signature of oscillations in the real-space velocity, which are explained by boundary-layer-expansion techniques. Pseudospectral simulations are used to show that such oscillations occur in velocity correlation functions in one- and three-dimensional hyperviscous hydrodynamical equations that display genuine turbulence.Comment: 5 pages, 2 figure

    Heterogeneous-driven glutathione oxidation: defining the catalytic role of chalcopyrite nanoparticles

    Get PDF
    Transition-metal nanocatalysis represents a novel alternative currently experiencing flourishing progress to tackle the tumor microenvironment (TME) in cancer therapy. These nanomaterials aim at attacking tumor cells using the intrinsic selectivity of inorganic catalysts. In addition, special attention to tune and control the release of these transition metals is also required. Understanding the chemical reactions behind the catalytic action of the transition-metal nanocatalysts and preventing potential undesired side reactions caused by acute cytotoxicity of the released ionic species represent another important field of research. Specifically, copper-based oxides may suffer from acute leaching that potentially may induce toxicity not only to target cancer cells but also to nearby cells and tissues. In this work, we propose the synthesis of chalcopyrite (CuFeS2) nanostructures capable of triggering two key reactions for an effective chemodynamic therapy (CDT) in the heterogeneous phase: (i) glutathione (GSH) oxidation and (ii) oxidation of organic substrates using H2O2, with negligible leaching of metals under TME-like conditions. This represents an appealing alternative toward the development of safer copper–iron-based nanocatalytic materials with an active catalytic response without incurring leaching side phenomena

    Learning from sensory predictions for autonomous and adaptive exploration of object shape with a tactile robot

    Get PDF
    Humans use information from sensory predictions, together with current observations, for the optimal exploration and recognition of their surrounding environment. In this work, two novel adaptive perception strategies are proposed for accurate and fast exploration of object shape with a robotic tactile sensor. These strategies called (1) adaptive weighted prior and (2) adaptive weighted posterior, combine tactile sensory predictions and current sensor observations to autonomously adapt the accuracy and speed of active Bayesian perception in object exploration tasks. Sensory predictions, obtained from a forward model, use a novel Predicted Information Gain method. These predictions are used by the tactile robot to analyse ‘what would have happened’ if certain decisions ‘would have been made’ at previous decision times. The accuracy of predictions is evaluated and controlled by a confidence parameter, to ensure that the adaptive perception strategies rely more on predictions when they are accurate, and more on current sensory observations otherwise. This work is systematically validated with the recognition of angle and position data extracted from the exploration of object shape, using a biomimetic tactile sensor and a robotic platform. The exploration task implements the contour following procedure used by humans to extract object shape with the sense of touch. The validation process is performed with the adaptive weighted strategies and active perception alone. The adaptive approach achieved higher angle accuracy (2.8 deg) over active perception (5 deg). The position accuracy was similar for all perception methods (0.18 mm). The reaction time or number of tactile contacts, needed by the tactile robot to make a decision, was improved by the adaptive perception (1 tap) over active perception (5 taps). The results show that the adaptive perception strategies can enable future robots to adapt their performance, while improving the trade-off between accuracy and reaction time, for tactile exploration, interaction and recognition tasks
    • …
    corecore