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Abstract

Humans use information from sensory predictions, together with current observations, for the optimal exploration and

recognition of their surrounding environment. In this work, two novel adaptive perception strategies are proposed

for accurate and fast exploration of object shape with a robotic tactile sensor. These strategies called 1) adaptive

weighted prior and 2) adaptive weighted posterior, combine tactile sensory predictions and current sensor observations

to autonomously adapt the accuracy and speed of active Bayesian perception in object exploration tasks. Sensory

predictions, obtained from a forward model, use a novel Predicted Information Gain method. These predictions are

used by the tactile robot to analyse ‘what would have happened’ if certain decisions ‘would have been made’ at

previous decision times. The accuracy of predictions is evaluated and controlled by a confidence parameter, to ensure

that the adaptive perception strategies rely more on predictions when they are accurate, and more on current sensory

observations otherwise. This work is systematically validated with the recognition of angle and position data extracted

from the exploration of object shape, using a biomimetic tactile sensor and a robotic platform. The exploration task

implements the contour following procedure used by humans to extract object shape with the sense of touch. The

validation process is performed with the adaptive weighted strategies and active perception alone. The adaptive

approach achieved higher angle accuracy (2.8 deg) over active perception (5 deg). The position accuracy was similar

for all perception methods (0.18 mm). The reaction time or number of tactile contacts, needed by the tactile robot

to make a decision, was improved by the adaptive perception (1 tap) over active perception (5 taps). The results

show that the adaptive perception strategies can enable future robots to adapt their performance, while improving the

trade-off between accuracy and reaction time, for tactile exploration, interaction and recognition tasks.

Keywords: active and adaptive perception, sensorimotor control, autonomous tactile exploration, Bayesian inference

1. Introduction1

Active perception in robotics is related to control strategies for intelligent acquisition of data to reduce uncertainty,2

which involves processes such as reasoning, decision-making, prediction and control [1]. Active perception in tactile3

sensing is employed by humans to explore and enhance the perceptual information from an object, through intelligent4

movements of their hands and fingers [2, 3]. Recent advances in technology have permitted to develop a large variety5

of biomimetic, small and reliable tactile sensors for robotic platforms with different morphologies. This evolution6

in sensor technology has enlarged the repertoire of research on active touch with robots that mimic human touch7

sensing [4].8
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Artificial tactile sensors, as in the human sense of touch, provide noisy measurements, which create uncertainty9

for making decisions and actions [5]. Humans overcome uncertainty by actively sensing their environment, but also10

by integrating various streams of information simultaneously. In robotics, Bayesian frameworks offer a systematic11

approach to deal with uncertainty, while defining how to combine multiple information sources to make optimal12

decisions [6].13

In this work, first an active perception method is presented, using a Bayesian formulation, to make a tactile robot14

able to decide where to move next during the exploration of an object. The active perception approach allows the robot15

to explore better object locations that improve perception accuracy. Previous works have shown that active Bayesian16

perception, controlling the robot movements by tactile feedback, offers a suitable method for autonomous exploration17

with various stimuli and sensors [7, 8]. Active perception is validated using a touch sensor to perform the contour18

following exploratory procedure, commonly employed by humans to extract object shape. In this exploration task19

the touch sensor makes decisions about where to move next, collecting better information while following the object20

shape. Second, two strategies called ‘adaptive weighted prior’ and ‘adaptive weighted posterior’, are proposed. These21

strategies enhance the active perception method by an adaptive integration of tactile sensory predictions and current22

observations from the exploration task. Preliminary results and initial analysis of the adaptive weighted prior strategy23

were presented in [9]. Both strategies use a novel adaptive Bayesian perception method, which extend our previous24

work on sensorimotor control, where learning and control parameters were manually predefined, together with a set25

of assumptions used for combination of information sources [10]. The adaptive weighted prior and posterior strategies26

implement a forward model for estimation of sensory predictions, using a Predicted Information Gain (PIG) approach.27

This predictive approach analyses ‘what would have happened’ if a certain decision ‘would have been made’ at previous28

decision times. Additionally, these adaptive strategies evaluate the accuracy of their own sensory predictions to adapt29

the combination of information sources, assigning a larger weight to the more reliable source. This approach ensures30

the optimal performance and trade-off between perception accuracy and reaction time for robot exploration tasks. The31

adaptive approach is systematically validated with the recognition of angle and position classes from a contour following32

exploration task, commonly employed by humans for extraction of object shape. This experiment, implemented with33

a biomimetic fingertip sensor and an exploratory robotic platform, allows the analysis and comparison of performance,34

in recognition accuracy and reaction time, of the adaptive strategies and the active perception approach.35

Overall, the results from all experiments show that the novel adaptive approach provides a high accuracy recognition36

for angle (2.8 deg) and position (0.18 mm) classes, but also improves the reaction time (1 tap) of the decision-making37

process. These values contrast with the results from active perception alone (5 deg, 0.18 mm and 5 taps). Furthermore,38

the adaptive strategies show their capability to improve the trade-off between accuracy and reaction time during the39

tactile object exploration procedure. These are important features for the development of robots capable of interacting40

with humans and the surrounding environment, autonomously and safely.41

The remainder of this article is organised as follows: Section 2 presents the related work on touch sensing and42

perception. The robot platform, tactile sensor and methods employed are presented in Section 3. Experiments and43

results are described in Section 4. Finally, discussion and conclusions are shown in Section 5 and Section 6, respectively.44
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2. Related work45

Traditionally, image processing have been used for analysis and recognition with tactile data [11]. Predefined46

sequences of tactile contacts and geometric moments were implemented with robotic grippers for object recognition [12,47

13]. Tactile images and joint angles were employed, together with a five-fingered robotic hand, for shape and object48

recognition using a fixed number of palpation and grasping movements [14]. Shape extraction and classification,49

performed with a dexterous robot hand, used an approach based on tactile images and kurtosis [15]. Image processing50

methods have also been implemented together with algorithms for classification such as Self-Organising Maps (SOM),51

Artificial Neural Networks (ANN), Principal Component Analysis (PCA), Bag-of-Features models and Fuzzy Logic52

methods [16, 17, 18, 19]. An advanced control framework for tactile exploration, allowed a robot arm to touch and53

follow the shape of different objects, using a large planar sensor array, filters and geometrical moments [20]. All these54

methods showed to be accurate, however, they are constrained by the sensor size, sensor geometry and the requirement55

to get data from the whole sensor surface. Furthermore, the fixed and predefined sequence of tactile contacts used in56

these works follows a passive perception approach, which limits the robot capability to explore better object locations57

to improve perception.58

Active perception overcomes the limitations of passive perception by making robots able to autonomously explore59

better object locations to improve perception, as humans do [2, 21]. Tactile robotic platforms, with different mor-60

phologies, have taken advantage from active perception to decide where to move next in exploration tasks [22, 23, 24].61

Biomimetic fingertip sensors and robotic hands have been able to perform a variety of tactile tasks, such as contour62

following, texture recognition, shape extraction and object recognition [25, 26, 27]. These works, based on proba-63

bilistic frameworks and intrinsic motivation models, permitted the robot hands and fingers to autonomously explore,64

accumulate evidence from the interaction with the environment, perceive and make decisions about the objects being65

explored. Active exploration of surfaces has also been studied using touch attention mechanisms implemented with66

Bayesian methods [28]. This touch attention approach was validated with the autonomous exploration of different67

objects and materials. Other works have used Bayesian methods for exploration of object shape, extraction of local68

properties, activity recognition and object localisation combining force and touch sensors [29, 30, 31]. Gaussian Pro-69

cesses (GP), which are a probabilistic formulation, have been used for autonomous active exploration and recognition70

of objects using biomimetic tactile sensors, force sensors and geometrical information [22, 32]. In general, probabilistic71

approaches have demonstrated to be suitable for autonomous robotics, providing flexibility and robustness to deal72

with sensor limitations, noise and uncertainty observed in the changing environment [7, 33, 34].73

Normally, humans make decisions based on the combination of multiple streams of information –for instance,74

predicted and current observations [35]. This combination of information and decision-making processes are crucial to75

control human movements, performed by the central nervous system (CNS), and ensure accurate motor actions [36, 37].76

Predicted and current sensor observations, employed for perception and sensorimotor control in [10], allowed a touch77

sensor to improve its perception accuracy and reaction time during an exploration task. The parameters for prediction78

of sensory observations were manually set, but also, the combination of information sources was manually controlled79

using a predefined weighting parameter. Hierarchical multimodal perception showed that fusion of observations, from80

multiple sensory inputs, was able to achieve better results over the use of individual perceptions [38]. Exploration and81

learning in robotics have used predictive knowledge-based models of intrinsic motivation, based on the knowledge gained82

over time and predictions from a learned forward model [27, 39, 40]. Forward models are essential to allow robotic83
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systems to perform autonomous decisions, based on the prediction of the effects from their motor actions [35, 41].84

Prediction of sensory observations for combination with current measurements was studied in [9], where an initial85

weight prior strategy was implemented, showing preliminary results in perception accuracy with a robotic sensor.86

This approach was implemented with a forward model, based on the Predicted Information Gain (PIG) method [42],87

during a tactile exploration task. Other works employed curiosity-driven models and Predicted Information Gain88

(PIG) approaches to engage the robot to learn actions and estimate the expected information during an exploration89

task [43, 44].90

Previous works have shown that active perception, learning of actions and combination of streams of information91

improve the robot performance. However, the individual use of these approaches do not maximise the trade-off between92

accuracy and speed during a robotic task. In this work, a method to predict sensory observations for the adaptation93

and control of an active tactile exploration is presented in Section 3. This method, based on a probabilistic formulation94

and Predicted Information Gain method, learns a forward model to estimate sensory predictions and combine current95

and predicted observations, which are used to adapt the performance of an active perception process. Thus, the96

proposed adaptive perception approach allows the robot fingertip sensor to actively explore, adapting its decisions and97

actions, but also to improve the trade-off between perception accuracy and speed, which are important aspects for the98

development of autonomous and intelligent robots.99

3. Methods100

3.1. Biomimetic tactile sensor101

A biomimetic fingertip sensor, which is part of the tactile sensory system of the iCub humanoid robot, is used for102

this research work [45, 46]. This tactile sensory system provides the iCub humanoid robot with capabilities to explore103

and interact with its environment [47, 48]. The biomimetic tactile sensor resembles the human fingertip with rounded104

shape and dimensions of 14.5 mm long × 13 mm wide, as shown in Figures 1A,B,C,D. The iCub fingertip sensor uses105

an array of twelve tactile elements (taxels of 4 mm diameter each), build with a capacitive technology. The taxels cover106

the inner core of the fingertip with a flexible printed circuit board (PCB). A 2 mm dielectric layer of silicone foam is107

placed above the PCB. The flexible and conductive outer layer allows deformations of the surface of sensor, analogous108

to those that occur with the human fingertip. Sensor measurements from the twelve taxels are read with a sampling109

rate of 50 Hz and locally digitised with 8 bit resolution (0–255 values). These values are sent to a computer through110

a CAN-bus for their subsequent processing.111

The technology used in the iCub fingertip sensor resembles the mechanical and sensory structure of the human112

fingertip, allowing the study of perception of pressure, curvature and edge orientation [23, 49, 50]. Interestingly, the113

taxels in the fingertip sensor respond analogously to human mechanoreceptors to brief and sustained response from114

tactile stimuli.115

3.2. Robotic platform116

An exploratory robotic platform was built to provide mobility to the fingertip sensor in x-, y- and z-axes. The robot117

platform is composed of two robots: (1) a Cartesian robot arm (YAMAHA XY-x series) with 2-DoF that provides118

mobility in the x- and y-axes, and (2) a Mindstorms NXT Lego robot with 1-DoF for sensor mobility along the z axis.119
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Figure 1: Tactile sensory system and exploratory robotic platform. (A) Flexible PCB and taxels of the iCub fingertip. (B) Fingertip sensor

covered with dielectric silicon. (C) Lateral view of the sensor. (D) Dimensions of the biomimetic sensor. (E),(F) Robotic platform for

tactile exploration in x-,y- and z-axes.

Both, the Cartesian and NXT robots are coupled in a proper manner to generate sensor movements in the x-, y- and120

z-axes.121

The tactile sensor was mounted on the robotic platform for precise positioning movements in the x- and y-axes with122

an accuracy of ≈20µm. Even though the reduced capabilities of the NXT robot, it allows to achieve movements along123

the z-axis. On the one hand, these robots allow the sensor to perform exploratory procedures. On the other hand,124

robot movements are controlled by tactile feedback provided by the biomimetic fingertip sensor. The sensor mounted125

on the exploratory platform is shown in Figures 1E,F. The available degrees of freedom of the robotic platform do not126

allow rotations along the z-axis of the tactile sensor. Therefore, the fingertip sensor keeps the same orientation during127

all the object exploration experiments.128

In this work, we chose a tactile exploration procedure (EP) based on taps or palpation. This EP reduces the129

damage to the sensor that, in contrast, a sliding motion could deteriorate the outer conductive layer after several130

repetitions of the experiments. The selected EP also generates an alternative tactile exploration movement, useful for131

robotic systems that are not able to slide their sensors. Even though humans typically slide their fingertips during an132

exploration procedure, there are situations where they palpate for exploration of a sharp surface and diagnosis through133

medical inspection.134

3.3. Data collection135

For validation of the accuracy and speed of the active and adaptive tactile perception methods, multiple tactile136

datasets composed of angle and position classes were systematically collected and used for contour following exploration137

tasks. For tactile stimuli, the surface of a plastic object attached to a table was used. The data were collected with a138

palpating procedure over the object along its radius; starting from the flat surface of the object, then passing through139

the edge, and finishing on air as shown in Figure 2. Each tap or palpation, with a duration of 2 sec, yielded a dataset of140

12×100 pressure measurements (sampling frequency 50 Hz and 12 taxels). The exploration movements were performed141
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Figure 2: Stimulus used for data collection while tapping on the object along the z axis. Angle and position data are recorded with 5 deg

and 0.2 mm steps respectively. Two tactile datasets, composed of 72 angle and 18 position classes each, are collected for training and

testing the proposed exploration methods.

along an 18 mm distance with 0.2 mm steps, generating a total of 90 taps for each edge orientation. Then, position142

classes were formed by grouping 5 taps per class, obtaining a total of 18 position classes of 1 mm span each. Forming143

groups of 5 taps per class allow the sensor to be actively repositioned to collect more data and improve the accuracy144

for recognition of position classes. This approach for grouping the data from the taps performed by the fingertip145

sensor has been validated in a previous work on object exploration [10]. The data collection procedure was repeated146

at 5 deg orientation steps around the complete plastic object, which provided 72 angle classes. Finally, a large dataset147

composed of 72 angle × 18 position classes = 1296 classes was constructed. The complete process was repeated two148

times to collect one dataset for training and one dataset for testing. Examples of the data collected from the circular149

object, with the sensor orientated of 0 deg, 80 deg and 160 deg along 18 mm are shown in Figure 3.150

The data collected from the fingertip sensor are used for object exploration with a contour following procedure.151

For this task, the active perception method, described in Section 3.4, uses the sensor position and angle information152

relative to the object contour for the exploration task. First, position information is used for active repositioning of the153

sensor, perpendicularly to the object edge, to improve perception accuracy. Second, recognition of the sensor angle,154

relative to the object edge, is used to move the sensor to the next exploration position along the object contour. This155

active repositioning and recognition process ensures a successful accomplishment of the exploration task as shown in156

the experimental results in Section 4.157

3.4. Active Bayesian perception158

The intelligent control of sensor movements improves the performance in decision speed and perceptual accuracy159

of a robot exploration task. This process, known as active perception, implemented with a Bayesian formulation, has160

been validated with different stimuli and various robotic sensors. In this work, the Bayesian formulation uses the161

following notation:162

• C, a finite set of perceptual classes with Npairs = |C|. Each perceptual class cn is composed by a (uk, vl) pair,163

where uk with k = 1, 2, . . . ,K and vl with l = 1, 2, . . . , L are position and angle classes, respectively.164

• z, sensor measurements from the biomimetic fingertip sensor.165

• n, denotes a specific class from the set of Npairs angles and position pairs.166

The Bayesian formulation implements a recursive estimation of the posterior probabilities from the product of the167
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Figure 3: Sample of data collected with the biomimetic fingertip sensor. Datasets for orientation of the fingertip sensor at 0 deg, 80 deg

and 160 deg along 18 mm (90 taps) over the plastic object used as stimuli. Normalised pressure measurements from activated taxels are

shown by a coloured code.

prior probabilities and likelihoods, as follows:168

P (cn|z1:t) =
P (zt|cn)P (cn|z1:t−1)

P (zt|z1:t−1)
(1)

where P (cn|z1:t) and P (zt|cn) are the posterior probability and likelihood at exploration time t. P (cn|z1:t−1) is the169

prior probability at time t− 1. The variable uk with K = 18 represents the position class for each angle class vl with170

L = 72. The sensor measurements from each tap or palpation are represented by z.171

For the initial exploration time, t = 0, uniform prior probabilities are assumed, which considers that all classes172

Npairs have the same probability, as follows:173

P (cn) = P (cn|z0) =
1

Npairs
(2)

For time t > 0 the prior is updated using the posterior estimated at time t − 1. From each tap performed by the174

sensor, a time series with Nsamples = Ntaxel × 100 samples of digitised pressure values are collected, with Ntaxels = 12.175

This information is used to built the nonparametric measurement model based on histograms, which are uniformly176

constructed by binning tactile data into bins b with Nbins = 100, as follows:177

Pk(b|cn) =
hkn(b)∑Nbins

b=1 hkn(b)
(3)

where hkn(b) is the sample count in bin b for taxel k over all training data in class cn. The mean log likelihood of a178
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test tactile contact zt over all samples and taxels is obtained as follows:179

logP (zt|cn) =

Ntaxels∑
k=1

Nsamples∑
j=1

logPk(sk(j)|cn)

NsamplesNtaxels
(4)

where sk(j) is the sample j in taxel k. Normalised values are ensured with the marginal probabilities conditioned from180

previous sensor observations, as follows:181

P (zt|z1:t−1) =

Npairs∑
n=1

P (zt|cn)P (cn|z1:t−1) (5)

Each estimated class cn corresponds to a (uk, vl) pair, which denotes the joint probability for position and angle182

perceptual classes. Then, individual position and angle beliefs are obtained with the following marginal posteriors:183

P (uk|z1:t) =

L∑
l=1

P (uk, vl|z1:t) (6)

P (vl|z1:t) =

K∑
k=1

P (uk, vl|z1:t) (7)

where position beliefs are summed over all angle classes, and angles beliefs are summed over all position classes. The184

recursive accumulation of evidence stops once a predefined belief threshold is exceeded, to make a decision using the185

maximum a posteriori (MAP) estimate, as follows:186

if any P (vl|z1:t) > βthreshold then

v̂ = arg max
vl

P (vl|z1:t)
(8)

where v̂ is the angle perceived by the fingertip sensor. The belief threshold βthreshold ∈ [0, 1] is used to control the187

amount of evidence needed to make a decision. The estimated angle is employed in the contour following task presented188

in Section 4.189

Previous works have shown that the iCub fingertip sensor is able to perceive with higher accuracy towards its190

centre [10, 23]. This means that the active perception approach needs to intelligently move the sensor towards its191

centre, in order to gradually improve the perception accuracy of the object being explored. Active perception is defined192

as the position ufix, the centre of the sensor, which the active control seeks to gradually attain by repositioning the193

sensor from an initial random and unknown fingertip location. The sensor movement policy is determined from the194

current position estimation, as follows:195

û = arg max
uk

P (uk|z1:t) (9)

u = u+ π(û), π(û) = ufix − û (10)

where π and û are the movement policy and current estimated position, respectively. The movement policy π(û)196

updates u, which defines the new position for exploration by the fingertip sensor. The complete perception process is197

described by the flowchart in Figure 4A, which groups all processes into layers. The active repositioning of the sensor198
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is repeated and controlled by βthreshold. Previous works on passive and active tactile sensing have shown that small199

belief thresholds, βthreshold ≈ 0, allow robots to respond fast but with low perception accuracy. Conversely, large belief200

thresholds, βthreshold ≈ 1, are highly accurate but require large amounts of evidence, increasing the response time.201

In Section 3.5 a method for adaptation of the active Bayesien perception process is presented. This method, based202

on sensory predictions and combination of information sources, improves the trade-off between accuracy and reaction203

time taking the best from both worlds.204

3.5. Adaptive perception205

Weighted prior and weight posterior sensorimotor strategies were presented in [10], where the forward model and206

combination of information sources were manually controlled to improve the performance of a tactile exploration task.207

A preliminary analysis of the weighted prior strategy, with a contour following task, was presented in [9]. In this work,208

both the weighted prior and posterior strategies are analysed in detailed and extended by autonomously learning the209

forward model and adapting the combination of information sources, and thus, to allow the fingertip sensor to adapt210

its performance during the exploration task. This process is achieved with an adaptive Bayesian perception method,211

that observes ‘what would have happened’ if a different action ‘would have been made’ at previous decision times. This212

approach allows the touch sensor to make predictions about the expected sensory observations for the next exploration213

step, which combined with current sensor observations, enables the sensor for adaptation of its perception accuracy214

and speed during the object exploration procedure.215

3.5.1. Adaptive weighted prior strategy216

This strategy performs a weighted combination of a uniform prior with sensory predictions estimated over time.217

The resulting combination is used as the new prior for the beginning of a new decision-making processes performed218

by the active Bayesian perception approach, as follows:219

Pprior(cn|z0) = αPpredict + (1− α)Pflat(cn) (11)

where the initial uniformly distributed prior is Pflat(cn), the predicted probability distribution is Ppredict, and Pprior(cn|z0)220

is the new prior for the active Bayesian perception. The confidence parameter α ∈ [0, 1] controls and adapts the contri-221

bution of each information source in Equation (11). The confidence parameter is autonomously adapted, based on the222

accuracy observed by the sensory predictions, Ppredict, as described in Section 3.5.4. The use of this adaptive strategy,223

together with active Bayesian perception, is shown by the flowchart in Figure 4B.224

3.5.2. Adaptive weighted posterior strategy225

This strategy combines the posterior probability with the sensory predictions estimated over time. The resulting226

combination is applied at the end of the Bayesian perception process, once the belief threshold βthreshold has been227

exceeded. This process is performed as follows:228

Pposterior(cn|z1:t) = αPpredict + (1− α)P (cn|z1:t) (12)

where the posterior and predicted probability distributions are P (cn|z1:t) and Ppredict, respectively. The updated229

posterior used to make a decision is represented by Pposterior(cn|z1:t). Similar to the weighted prior, the contribution230
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Figure 4: Flowcharts for active perception and adaptive strategies. (A) Active Bayesian perception composed of five layers: sensory,

decision, control (black colour boxes), perception and active (green colour boxes). Perception layer accumulates evidence while actively

reposition of the sensor by the active layer. Decision-making, by the decision layer, controls the movements of the robot platform in the

control layer. (B) Adaptive weighted prior strategy (blue colour box) extends the active Bayesian perception (green colour box) using

sensory predictions and combining them with current observations. This strategy, applied at the beginning of the perception process,

impacts on the prior probability. (C) Adaptive weighted posterior (red colour box) allows the active perception to make sensory predictions

and combine information streams, but in this case, this strategy takes place at the end of the perception process, impacting the posterior

probability.

of each information source is controlled by the adaptive confidence parameter α. This adaptive strategy together with231

the active Bayesian process is shown in Figure 4C. The predicted probability distribution, Ppredict, employed by both232

the adaptive weighted prior and posterior strategies, is defined by the following forward model:233

Ppredict = P (uk, vl + ∆|zt) (13)

where Ppredict uses the posterior probability distribution to shift the angle classes vl by a parameter ∆ = {1, 2, . . . , L},234

with L angles classes. Shifting the angle classes provides an estimation of the sensory observations for the next angle235

classes during the exploration process. The approach for learning and adapting the parameter ∆ is described in236

Section 3.5.3. The approach to adapt the parameter α, used to autonomously control the combination of information237

sources, is described in Section 3.5.4. The used of both parameters allows the fingertip sensor to achieve a better238

performance and trade-off between accuracy and reaction time during the exploration of an object.239

3.5.3. Forward model learning240

Forward models allow robots to predict sensory observations from actions performed at previous time steps. These241

models are crucial for the development of autonomous robots capable of learning, adapting and making optimal242
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decisions and actions [35, 41]. The forward model in Equation (13) depends on the learning and adaptation of the243

parameter ∆, which is used for prediction of sensory observations for the next angle classes during the exploration task.244

This approach allows the fingertip sensor to adaptively combine the predicted or expected sensory observations with245

current sensor observations. The learning process is based on a Predicted Information Gain (PIG) approach, which has246

been studied for prediction of observations using complete knowledge of the environment [42]. In this work, the PIG247

approach has been modified to allow the fingertip sensor to observe ‘what would have happened’ if a certain action248

‘would have been made’ from the previous decision time. This learning and adaptive process extends our previous249

work in [10], where the parameter ∆ was predefined for all the object exploration process. In the PIG approach, the250

parameter Θ̂ denotes the estimated observations from the active Bayesian perception process, while the set of actions251

(fingertip movements) and states (angle perceived) is denoted by a = {a1, a2, . . . , aL} and s = {s1, s2, . . . , sL} with L252

number of angle classes. The PIG approach is defined as follows:253

PIG = γ
∑
s∗

Θ̂a,s,s∗DKL(Θ̂a,s,s∗

a,s ||Θ̂a,s) (14)

where the estimated observations for the current state s by choosing action a are denoted by Θ̂a,s. The hypothetical254

observations s∗ for each action chosen in previous state s are represented by Θ̂a,s,s∗

a,s . The hypothetical outcomes255

s∗ that the perception process would have been provided by choosing action a in state s are denoted by Θ̂a,s,s∗ .256

This formulation is normalised by the parameter γ. The Kullback-Leibler Divergence (DKL) provides the amount of257

information that would have been lost for each action performed at the previous decision time as follows:258

DKL(Θ̂a,s,s∗

a,s ||Θ̂a,s) =

L∑
s∗

Θ̂a,s,s∗

a,s log

(
Θ̂a,s,s∗

a,s

Θ̂a,s

)
(15)

The result from Equation (14) is used to update the transition matrix, Γτ , which is employed to obtained the most259

probable shifting value for ∆, as follows:260

Γτ = ηΓτ−1PIG (16)

Γτ = η

((
τ − 1

τ

)
Γτ−1 +

1

τ

)
PIG (17)

where the transition matrix at decision time τ and τ − 1 are Γτ and Γτ−1, respectively. The normalising parameter η261

ensures probabilities in [0, 1]. In previous works, this approach has been studied for online estimation of parameters262

using fixed or constant reward values [51]. Conversely, here we use the PIG measurement as a reward, which takes263

adaptive values in [0, 1] according to the decisions and actions made by the perception system. Then, the position of264

the largest probability from the transition matrix Γτ is assigned to the parameter ∆, as follows:265

∆ = arg max(Γτ ) (18)

The online adaptation of the parameter ∆, used by the forward model in Equation (13), provides the predicted266

probability distribution used by both the adaptive weighted prior and posterior strategies. This is an important267

improvement over our previous work in [10], where the parameter ∆ was manually set to a predefined value for all the268

exploration task. The predictions, made by the forward model, need to be assessed to ensure an optimal performance269
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for the weighted combination of information sources. The proposed method for assessment of predictions is described270

in Section 3.5.4.271

3.5.4. Forward model assessment272

The predictions made by the forward model need to be assessed to obtain an optimal performance during the273

object exploration task. The assessment process is used to control the confidence parameter α, used in Equations (11)274

and (12), for the adaptive weighted combination of information sources. For this process a Dynamic Bayesian Network275

(DBN) is employed, permitting to dynamically control the contribution from the predictions made by the forward276

model, according to their accuracy observed over time, as follows:277

Hτ = ηξτ (19)

where Hτ contains the angle observations updated from decision time τ −1 to τ . The normalising factor is represented278

by η. The evaluation of predictions from the forward model is performed by ξτ , as follows:279

ξτ =

(
τ − 1

τ

)
Ppredict +

(
1

τ

)
P (cn|z1:t) (20)

where Ppredict is the prediction from the forward model and P (cn|zt) is the posterior from the Bayesian perception280

process, obtained once the belief threshold has been exceeded. The confidence parameter α is updated as follows:281

ατ =

(
τ − 1

τ

)
ατ−1 +

(
1

τ

)
Hτ (v∗) (21)

v∗ = arg maxPpredict (22)

where ατ is the updated confidence parameter, ατ−1 is the confidence parameter from the previous assessment at282

decision time τ − 1, and H(v∗) is the probability of the MAP estimate angle class v∗ from the forward model. The283

updated parameter ατ is used in Equations (11) and (12) for controlling the contribution from each information source.284

This process ensures the optimal weighting and use of both, the predicted and current sensor observations. Overall,285

the proposed adaptive perception method allows the fingertip sensor to autonomously adapt its performance, in order286

to achieve the optimal trade-off in perception accuracy and speed during the tactile exploration procedure.287

Flowcharts in Figure 4 show the processes for active Bayesian perception, and its integration with the adaptive288

weighted prior and posterior strategies. In Section 4, these methods are tested using the tactile exploratory platform289

presented in Sections 3.1 and 3.2 to perform a contour following exploration procedure.290

4. Results291

This section presents the results from the adaptive weighted prior and posterior strategies implemented with a292

contour following exploration procedure. Commonly, humans employ this exploration procedure for extraction and293

recognition of object shape using their hands and fingers. The experiments were performed using real tactile data294

collected from the fingertip sensor and plastic object presented in Section 3.295
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4.1. Active tactile exploration of object shape296

For the first experiment, active Bayesian perception was implemented to observe the performance in accuracy and297

reaction time of the sensor to explore, follow and extract the contour of an object. For this task, a circular-shaped298

object was built using real tactile data previously collected (see Section 3.3), for exploration of object shape in offline299

mode. The fingertip sensor performed 10,000 repetitions of the exploration process, randomly selecting the initial300

position for each repetition of the contour following task. Then, after selecting the initial position, the fingertip301

sensor performed the contour following task using the approach presented in Section 3.4. The set of belief thresholds302

βthreshold = {0, 0.05, . . . , 0.99} was used to observe how the amount of evidence accumulated affects the performance303

of the object exploration task. Figure 5 shows the recognition accuracy of angle and position classes against belief304

threshold and reaction time. Accurate recognition of angle and position classes is required to allow the fingertip sensor305

to perceive its location and decide where to move next during the contour following task. Results in Figures 5A,B306

show that small belief thresholds (βthreshold ≈ 0) do not allow the robot to accumulate enough evidence, which is307

reflected in the low recognition accuracy for both, angle (43 deg error) and position (7.5 mm error) classes. In this308

case, the perception system is able to make rapid decisions (1 tap) and performing a fast object exploration. The use309

of large belief thresholds (βthreshold ≈ 0.99) shows an improvement in accuracy, reducing the recognition error for angle310

and position classes to 5 deg and 0.18 mm, respectively. However, the reaction time is affected, increasing to 5 and 8311

the number of sensor contacts needed for recognition of angle and position classes, respectively (Figures 5C,D). The312

accuracy and reaction time present a gradual and smooth improvement for increasing belief thresholds. With these313

results it is possible to select the parameter βthreshold for the appropriate trade-off between accuracy and speed. The314

result from the contour following task with a small belief threshold (βthreshold = 0.0) is show in Figure 6A, where the315

sensor was not able to extract the object contour accurately. The increment of the belief threshold to βthreshold = 0.5316

improves the exploration accuracy, but there are still regions of the object contour that were not accurately recognised317

by the sensor (Figure 6B). In contrasts, the exploration procedure was successfully performed using a large belief318

threshold of βthreshold = 0.99 (Figure 6C).319

4.2. Adaptive weighted prior strategy320

The adaptive weighted prior strategy was tested with the contour exploration of a circular-shaped object built321

with real tactile data. The exploration process was repeated 10,000 times, randomly selecting the initial position for322

exploration. The results from this adaptive Bayesian perception process are compared with the results from active323

Bayesian perception alone. The implementation of the adaptive strategy is based on the flowchart in Figure 4B. In324

this experiment, real tactile data were used for both training and testing phases, and a set of belief thresholds was325

used to control the performance in accuracy and reaction time of the object exploration as in Section 4.1.326

The adaptive weighted prior allows the active Bayesian perception to use a non-uniform prior probability, which is327

learned and adapted based on the observation of decisions and actions made. This approach makes the tactile robot328

capable of autonomously adapt its perception accuracy and reaction time. The results from this adaptive strategy329

are shown in Figure 7, where the recognition of angle and position classes, against belief threshold and reaction330

time, are represented by blue colour curves. For comparison of performance, results from active Bayesian perception331

are included (green colour curves). The adaptive weighted prior achieved the smallest angle and position errors of332

2.8 deg and 0.18 mm with βthreshold = 0.5 and βthreshold = 0.99, respectively (Figure 7A,B). Angle perception accuracy333
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Figure 5: Perception accuracy and reaction time for recognition of angle and position perceptual classes from a contour following task with

active Bayesian perception. (A),(B) Perception accuracy against belief threshold is improved for larger belief thresholds. (C),(D) Reaction

time required for decision-making increases for larger belief thresholds. These results shows that active perception can be adjusted to

perform either fast decisions with low accuracy or highly accurate decisions with large number of tactile contacts.

(A) βthreshold = 0.0 (B) βthreshold = 0.5

(C) βthreshold = 0.99

Figure 6: Tactile contour following results from a circular-shaped object using active perception and a biomimetic fingertip sensor. The

object contour is defined by the black dotted line, sensor movements are represented by the green colour circles and the black solid line

defines the exploration limits according to the collected datasets. (A) Active perception with belief threshold, βthreshold = 0.0, does not

allow the touch sensor to extract the object shape. (B) Active perception with belief threshold, βthreshold = 0.5, improves the exploration

process but still the object shape is not extracted successfully. (C) Large belief thresholds, βthreshold = 0.99, allow the active perception

approach to successfully follow and extract the object shape.
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Figure 7: Adaptive weighted prior strategy employed with active perception for recognition of angle and position perceptual classes during

a contour following exploration procedure (blue colour curves). (A) Angle perception accuracy is improved requiring small belief threshold

values to achieve high accuracy. (C) This result also improves the reaction time for angle perception. (B,D) Recognition of position classes

and reaction time do not show improvement by the adaptive weighted prior strategy. Results from the use of active Bayesian perception

alone are included (green color curves) for comparison of performance.

is improved even for small belief thresholds. In contrast, no improvement was observed for perception of position334

classes. Similar to active perception, the adaptive weighted prior shows a gradual reduction of errors for the transition335

region from small to large belief thresholds. Angle and position accuracy against reaction time in Figures 7C,D, show336

an improvement in the number of tactile contacts (≈ 1 tap) required for the highest accuracy in angle perception.337

However, no effects were observed in reaction time for perception of position classes with the adaptive weighted prior338

strategy.339

The accuracy of predictions made by the forward model, based on the observation of decisions and actions, are shown340

in Figure 9A. The forward model shows large variability and low accurate prediction at the beginning of the experiment.341

However, the performance of the forward model is improved over time, when more decisions and observations have342

been made. Adaptation of the confidence parameter, α, used for controlling the combination of information sources,343

is shown in Figure 9B. The confidence parameter is adapted according to the accuracy of predictions with respect to344

what was perceived in the current decision time. The results shown in Figure 9 were obtained with the belief threshold345

βthresholds = {0, 0.05, . . . , 0.99}. This adaptive method is capable of improving the active Bayesian perception process,346

permitting the development of intelligent tactile systems that autonomously combine information sources to adapt its347

exploration performance.348

4.3. Adaptive weighted posterior strategy349

The contour following task was repeated using the adaptive weighted posterior strategy. The flowchart in Figure 4C350

shows the processes for this adaptive strategy. Similar to the experiments in Section 4.2, real tactile data were used for351
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Figure 8: Adaptive weighted posterior strategy employed with active perception for recognition of angle and position perceptual classes

during a contour following exploration procedure (red colour curves). (A) High angle recognition accuracy is achieved with small belief

threshold values. (C) Reaction time is also improved requiring less number of tactile contacts to make a decision. These results improve

the performance of active perception alone. (B) Recognition of position classes shows slight improvement for small belief thresholds. (D)

However, reaction time for recognition of position classes does not show improvement. Results from the use of active Bayesian perception

alone are also included (green color curves) for comparison of performance.

training and testing the adaptive strategy, using a set of belief thresholds for the analysis of performance in accuracy352

and reaction time.353

The adaptive weighted posterior strategy does not affect the prior probability of the active Bayesian perception354

process, as with the weighted prior strategy. This strategy combines sensory predictions with the posterior probability355

from the active Bayesian perception, once the belief threshold has been exceeded. The decisions are made based on356

the combination of current and predicted probability distributions. This process allows the tactile exploration system357

to adapt its performance, making decisions based on observations from previous decision times. Figure 8 shows the358

performance in accuracy and reaction time for recognition of angle and position classes during the contour following359

of a circular-shaped object. Results from the adaptive weighted posterior strategy (red colour curves) are compared360

with results achieved by active Bayesian perception alone (green colour curves). The smallest recognition errors for361

angle and position classes against belief threshold are 5 deg and 0.18 mm for β = 0.2 and β = 0.99, respectively362

(Figure 8A,B). Recognition of angle classes was improved with small belief thresholds, reaching smaller errors than363

active Bayesian perception. In this case, the accuracy presented a steady behaviour for belief thresholds from 0.2364

to 1. Recognition of position classes presented an improvement for small belief thresholds, but it showed a similar365

performance to active Bayesian perception for the transition between small and large belief thresholds. The adaptive366

weighted posterior also showed an improvement in reaction time, requiring 1 tap for the smallest angle recognition367

error. However, this method did not affect the reaction time for recognition of position classes, presenting similar368

results to the use of active Bayesian perception alone.369
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Figure 9: Forward model and confidence parameter implemented by the proposed adaptive strategies. These results are obtained from

a contour following exploration procedure using a biomimetic fingertip sensor and evaluated with a set of belief threshold βthreshold =

{0, 0.05, . . . , 0.99}, which are represented by coloured curves. (A) Adaptive weighted prior strategy; accuracy of the forward model for

prediction of sensory observations improves over time. (B) Confidence parameter adapts over time, based on the accuracy of predictions, to

control the combination of information sources by the adaptive weighted prior strategy. (C) Adaptive weighted posterior strategy; forward

model accuracy improves over time. (D) Adaptive confidence parameter, based on the accuracy of prediction, which permit to control the

combination of information sources by the weighted posterior strategy.

The adaptive behaviour of the forward model and confidence parameter is shown in Figures 9C,D. These results were370

obtained from the exploration task using the set of belief threshold βthreshold = {0, 0.05, . . . , 0.99}. Predictions made371

by the forward model presented a large variability at the beginning of the exploration task, but they improved when372

more decisions and observations were made. Similarly, the confidence parameter was adapted over time, according to373

the accuracy of predictions from the forward model. This process permits to control the combination of information374

sources, but also to control the contribution made by predictions in the decision-making process. Thus, decisions rely375

more on predictions when they are accurate, otherwise, decision rely more on the output from active perception alone.376

Results show that this adaptive strategy allows the development of intelligent tactile exploration systems that, capable377

of autonomously adapt over time, achieve a better performance and trade-off between accuracy and reaction time.378

A statistical analysis, using the one-way analysis of variance (ANOVA), was used to observe whether the angle379

and position classes, recognised by the adaptive weighted strategies, are statistically different from the recognition380

performed by active perception alone. Thus, we analyse the null-hypothesis H0: there is no difference between the381

recognition of angle and position classes performed by the active perception, adaptive weighted prior and adaptive382

weighted posterior methods. The hypothesis testing employs information from angle and position classes, recognised383

by the active and adaptive methods from all the contour following exploration tasks performed by the fingertip sensor.384

Statistical information from these variables is presented in Table 1.385

First, ANOVA is applied to all angle and position classes obtained from the active perception method and adaptive386
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Table 1: Statistical information (mean, standard deviation, median, minimum and maximum values) from the angle and position classes

recognised by active perception, adaptive weighted prior and posterior methods. This information was obtained from the object shape

exploration implemented with the contour following procedure using the tactile sensor.

active perception adaptive weighted prior adaptive weighted posterior

angle position angle position angle position

mean 2.09 1.74 1.31 1.86 1.15 1.33

standard deviation 2.41 2.05 1.19 1.55 0.74 1.25

median 1.02 0.91 0.86 1.35 0.91 0.85

minimum / maximum 0.49 / 12.97 0.11 / 8.11 0.21 / 6.87 0.02 / 6.62 0.34 / 5.87 0.04 / 5.19

Table 2: Statistical analysis of active perception and the adaptive weighted prior strategy. The parameters MSC/MSE, F-statistic and

p-value show the difference between results from active perception (no adaptive approach) and the adaptive weighted prior strategy for

recognition of angle and position classes.

active perception (no adaptive) vs adaptive weighted prior

angle position significance level

MSC/MSE F-statistics p-value MSC/MSE F-statistics p-value α

45.38/3.62 12.52 0.0004 1.19/3.32 0.35 0.54 0.001

reject H0 fail to reject H0

weighted prior strategy. The results from analysis, composed by the mean square columns (MSC), mean square errors387

(MSE), F-statistics and p-value, are shown in Table 2. For angle recognition, the F-statistics value of 12.52 (MSC/MSE388

= 45.38/3.62), together with the p-value of 0.0004 for a significance level α = 0.001, indicate that the null-hypothesis389

is rejected. This means that there is a statistically significant difference between angle recognition from the active390

and adaptive weighted prior. In contrast, for position recognition, the adaptive weighted prior failed to reject the391

null-hypothesis, given the p-value of 0.54 and significance level α = 0.001. In other words, there is no statistically392

significant difference between the active and adaptive weighted prior methods for the recognition of position classes.393

Second, the results from ANOVA applied to the active and adaptive weighted posterior methods are shown in394

Table 3. For the case of angle recognition, the null-hypothesis is rejected based on the p-value of 8.23×10−6. Conversely,395

the adaptive weighted posterior method failed to reject the null-hypothesis for recognition of position classes, given the396

p-value of 0.041 for α = 0.001. The results from Table 3 show that there is statistically significant difference, between397

the active and adaptive weighted posterior methods, for the recognition of angle classes. However, this difference was398

not observed for the recognition of position classes.399

Third, the statistical analysis is applied to both adaptive weighted strategies as shown in Table 4. This analysis400

shows that there is no statistically significant difference between the angle and position recognised by both adaptive401

weighted strategies (fail to reject the null-hypothesis). This result is indicated by the p-values of 0.17 and 0.0013402

for angle and position classes, respectively, with significance level α = 0.001. These results also correspond to the403

performance observed from angle and position perception by both adaptive weighted strategies in Sections 4.2 and 4.3.404

5. Discussion405

This work presented an investigation on adaptive strategies that, combining sensory predictions and current ob-406

servations, enhance the active perception process for autonomous tactile exploration. First, this research showed that407

tactile exploration is improved by active control of robot movements using tactile feedback. Second, it was shown that408

sensory predictions from a forward model, combined with current sensory observations, permitted the autonomous409

18



Table 3: Statistical analysis of active perception and the adaptive weighted posterior strategy. The parameters MSC/MSE, F-statistic and

p-value show the results from active perception (no adaptive approach) and the adaptive weighted posterior strategy for recognition of

angle and position classes.

active perception (no adaptive) vs adaptive weighted posterior

angle position significance level

MSC/MSE F-statistics p-value MSC/MSE F-statistics p-value α

65.65/3.18 20.61 8.23×10−6 12.13/2.89 4.18 0.041 0.001

reject H0 fail to reject H0

Table 4: Statistical analysis of the adaptive weighted prior and adaptive weighted posterior strategies. The parameters MSC/MSE, F-

statistic and p-value show the statistical analysis from the recognition of angle and position classes performed with the contour following

experiments.

adaptive weighted prior vs adaptive weighted posterior

angle position significance level

MSC/MSE F-statistics p-value MSC/MSE F-statistics p-value α

1.86/0.99 1.88 0.17 20.94/1.98 10.53 0.0013 0.001

fail to reject H0 fail to reject H0

adaptation of active Bayesian perception to improve perception accuracy, reaction time and their trade-off during410

robot tactile exploration and recognition tasks.411

For validation of the adaptive strategies for object exploration, real tactile datasets were collected using a biomimetic412

fingertip sensor and a plastic object as stimuli. Sensor movements were systematically controlled by a 3-DoF robot413

with an exploratory procedure based on taps or palpations. This exploratory procedure (1) is inspired by humans in414

situations when they touch a sharp surface or perform a medical inspection, (2) it reduces damage to the surface of415

fingertip sensors and (3) offers an alternative exploration approach for robots that are not capable to slide their tactile416

sensors. In this work, a circular-shaped object was selected for all the experiments for the following reasons. First, the417

circular object gives the fingertip sensor the possibility to test all the angles classes, while covering the 360 degs around418

the plastic object. This type of object allows us to observe the accuracy and speed for recognition of all angle classes.419

Second, building the circular object using real tactile data, for exploration in offline mode, is not as computationally420

expensive as building other objects, e.g., sellotape. Exploration of other object shapes, may not allow the fingertip421

sensor to test all the angle classes for validation of the active and adaptive perception methods.422

First, active perception method was tested with the contour following exploration to extract object shape (see423

Figures 5 and 6). This perception approach, which has been tested in a previous work [10], is included here to motivate424

the research on the novel adaptive strategies for perception, exploration and combination of information sources. Active425

tactile movements, and large evidence accumulated from the interaction with the environment, permitted the sensor426

to achieve a gradual improvement in perception accuracy during object exploration (see Figure 6B). The accumulation427

of evidence is controlled by a belief threshold, which needs to be exceeded to allow the fingertip sensor to make a428

decision. These results fit with studies from psychology and neuroscience, which have shown that humans make reliable429

decisions once they have sufficient evidence [52]. Large belief thresholds provide better perception accuracy, however,430

the larger the belief threshold the larger the reaction time (number of taps) required to make a decision. This effect is431

expected given that humans explore actively moving their hands and fingers, but also they employ the needed time to432

reach the sufficient level of confidence about the object being explored [53]. This work has focused on active sensing,433

but for a description of the benefits of active over passive sensing refer to the following works [10, 23].434
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Humans rely on multiple information sources to make accurate and fast decisions. For example, the use of current435

information from the environment, and knowledge gained over time, allow humans to make predictions, learn and436

adapt their performance while interacting with the environment [6, 36, 37]. In this work, the adaptive weighted prior437

and posterior strategies, that present a novel approach for adaptive combination of information sources and prediction438

of sensory observations, were implemented to improve the performance of the active Bayesian perception method.439

First the adaptive weighted prior, applied at the beginning of the Bayesian perception process, combines a uniform440

and a predicted probability distribution. A preliminary study of the adaptive weighted prior was presented in [9], and441

here a detailed and systematic analysis was undertaken. Second, the adaptive weighted posterior, applied at the end of442

the active Bayesian perception process, combines a posterior and a predicted probability distribution. These adaptive443

strategies permit the observation of the effects in performance when sensory predictions, combined with current sensory444

observations, are applied at different stages of the active Bayesian perception process. Sensory predictions employed445

by these methods were obtained with a forward model using a predicted information gain approach [42, 54], which in446

this work was modified to analyse ‘what would have happened’ if a certain action ‘would have been made’ at previous447

decision time. This process allowed the autonomous adaptation of the forward model based on the observation of448

decisions and actions made. The benefit of these adaptive methods is that if predictions are accurate, then tactile449

perception will improve using a combination of information sources than relying on current sensory observations alone.450

Essentially, this means that decisions made by active Bayesian perception will be more accurate by the combination451

of what it was predicted and current sensory observations, which overcomes the assumptions and manual control of452

parameters employed in previous works [10]. The adaptive weighted strategies were systematically validated with the453

recognition of angle and position classes from the contour following exploration procedure. In this experiment both454

strategies improved the performance of angle recognition, with small recognition errors and small belief thresholds,455

over the results obtained by active perception alone. This demonstrates that adaptation of active perception allows456

the fingertip sensor to perform more accurate and fast decisions, while improving the trade-off between accuracy457

and reaction time in autonomous robot exploration tasks (Figures 7 and 8). For recognition of position classes, an458

improvement was observed with the adaptive weighted posterior strategy. However, no improvement was observed459

with the adaptive weighted prior strategy. This performance in position classes is related to the design of the forward460

model, which only takes into consideration the angle classes for estimation of sensory predictions. Then, both adaptive461

strategies are optimised for perception of angle classes but not for position classes. For that reason, for the future462

work we consider to extend the forward model to make predictions about expected angles and positions. With this463

approach, we plan to improve the performance in accuracy and speed for both angle and position classes during464

exploration tasks. Figures 7 and 8 show the improvements from the adaptive strategies and their comparison with465

active Bayesian perception.466

To ensure reliable combination of information sources, predictions from forward model need to be evaluated and467

weighted [35]. A confidence parameter was employed to weight the combination of information sources for both adaptive468

strategies. This parameter autonomously adapts over time, according to the accuracy of what it was predicted and469

what it was perceived. Therefore, this parameter controls the contribution from predictions used in the combination470

of information sources, ensuring reliable, accurate and fast decisions from the Bayesian perception process. The471

adaptation of the forward model and confidence parameter for both adaptive strategies is shown in Figure 9. We472

observed that the forward model started with large variability, providing inaccurate predictions, however, the forward473
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model improved its performance once more observations and prediction were made. Thus, the confidence parameter474

was adapted according to the reliability of predictions, to ensure a better performance in accuracy and reaction time.475

Results showed that accurate predictions benefit the active perception process, but even if predictions are not accurate476

they do not degrade or negatively affect the perception process. The proposed adaptive perception and weighted477

combination processes offer a robust approach for various robotic applications. For instance, human-robot interaction478

and collaboration need of robots capable to predict human actions, performing safe and adaptive robot control and479

reducing the risk of injuring the human operator. Assistive robots need to understand and predict the intention480

of human movement, in order to safely apply the required assistance at the appropriate time. Wearable robots for481

rehabilitation is another application where adaptation, according to the recovery progress estimated by the robot, is482

crucial to deliver a reliable and beneficial rehabilitation to the patient. Recognition, prediction and adaptation, using483

data from multiple information sources, are essential to develop autonomous robots capable to learn and adapt to484

their surrounding changing environment. Another important aspect in robotics, and which we plan to investigate in485

future works, is the adaptive combination of multiple sensing modalities, e.g., touch, vision, audio, which represents a486

challenging and crucial topic to gradually deliver intelligent and highly safe autonomous systems for interaction with487

their surrounding environment as humans do.488

The experiments shown in this work employed rigid objects only, however, nowadays non-rigid or soft objects489

are becoming attractive for robotics research. Non-rigid objects are gaining attention because of their compliance490

and deformable physical characteristics, which are essential for safe human-robot interaction, assistive robots and491

autonomous exploration robots. Currently, the tapping procedure for data collection, implemented by our proposed492

method, uses a predefined threshold for contact detection with the fingertip sensor. Thus, for contact detection of493

non-rigid object, our method needs to be extended with a module that adapts the contact threshold according to the494

softness of the object being explored. This adaptive contact detection module would also allow the fingertip sensor to495

explore objects made of a mixture of different materials. However, the modules for active and adaptive perception,496

and control of the fingertip sensor, would not need to be modified. The development and integration of modules for497

dealing with non-rigid object is part of our plans for future works. All in all, this work proposes a method to allow the498

development of intelligent systems capable of autonomously control the combination of information sources, relying499

more on predictions when they are accurate and relying more on current observations otherwise.500

Autonomous robots, capable to understand their surrounding environment, require methods for tactile perception501

and decision-making, but also for adaptation over time. Overall, this work presented two novel computational methods,502

that integrating both active and adaptive perception processes, enable robots to perceive and autonomously adapt their503

performance and the trade-off between perception accuracy and reaction time during tactile exploration, recognition504

and interaction tasks.505

6. Conclusions506

In this work, the adaptive weighted prior and posterior strategies were developed to improve the performance of507

active perception in tactile exploration tasks. These strategies presented a novel method for adaptive combination508

of current and predicted sensory observations. Both adaptive strategies employed the novel Predicted Information509

Gain (PIG) method, to learn the forward model responsible for providing sensory predictions. A confidence parameter510

was learned for the evaluation of the accuracy of predictions, and adapt the combination of information sources. The511
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adaptive strategies were systematically validated with the recognition of angle and position data extracted from the512

exploration of object shape, using a tactile robotic platform. Angle class accuracy of 2.8 deg, and reaction time of 1513

tap, were improved by the adaptive approach over the performance achieved by active perception of 5 deg and 5 taps.514

Position class accuracy of 0.18 mm was similar for all perception methods. The results demonstrate the benefits, in515

accuracy and reaction time, when multiple information sources are adaptively combined. Overall, the novel adaptive516

weighted strategies can enable tactile robots to autonomously improve their performance in exploration and recognition517

tasks, and in the interaction with humans and the surrounding environment.518

7. Acknowledgements519

The authors would like to thank to the Sheffield Robotics Lab at the University of Sheffield, and the Autonomous520

System Lab at the University of Bath for the robotic facilities and the technical support provided for this research521

work.522

8. References523

[1] R. Bajcsy, Active perception, Proceedings of the IEEE 76 (8) (1988) 966–1005. doi:10.1109/5.5968.524

[2] T. J. Prescott, M. E. Diamond, A. M. Wing, Active touch sensing, Phil. Trans. R. Soc. B 366 (2011) 2989–2995.525

doi:10.1098/rstb.2011.0167.526

[3] R. L. Klatzky, S. Lederman, Intelligent exploration by the human hand, in: Dextrous robot hands, Springer, 1990,527

pp. 66–81.528

[4] U. Martinez-Hernandez, Tactile sensors, in: Scholarpedia of Touch, Springer, 2016, pp. 783–796.529

[5] H. Barlow, M. Hawken, A. Parker, T. Kaushal, Human contrast discrimination and the threshold of cortical530

neurons, JOSA A 4 (12) (1987) 2366–2370.531

[6] K. P. Körding, D. M. Wolpert, Bayesian decision theory in sensorimotor control, Trends in cognitive sciences532

10 (7) (2006) 319–326.533

[7] U. Martinez-Hernandez, A. Damianou, D. Camilleri, L. W. Boorman, N. Lawrence, T. J. Prescott, An integrated534

probabilistic framework for robot perception, learning and memory, in: Robotics and Biomimetics (ROBIO), 2016535

IEEE International Conference on, IEEE, 2016, pp. 1796–1801.536

[8] U. Martinez-Hernandez, I. Mahmood, A. A. Dehghani-Sanij, Simultaneous bayesian recognition of locomotion537

and gait phases with wearable sensors, IEEE Sensors Journal 18 (3) (2018) 1282–1290. doi:10.1109/JSEN.2017.538

2782181.539

[9] U. Martinez-Hernandez, T. J. Prescott, Adaptive perception: learning from sensory predictions to extract object540

shape with a biomimetic fingertip, in: Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International541

Conference on, IEEE, 2017, pp. 6735–6740.542

[10] U. Martinez-Hernandez, T. J. Dodd, M. H. Evans, T. J. Prescott, N. F. Lepora, Active sensorimotor control for543

tactile exploration, Robotics and Autonomous Systems 87 (2017) 15–27.544

22

http://dx.doi.org/10.1109/5.5968
http://dx.doi.org/10.1098/rstb.2011.0167
http://dx.doi.org/10.1109/JSEN.2017.2782181
http://dx.doi.org/10.1109/JSEN.2017.2782181
http://dx.doi.org/10.1109/JSEN.2017.2782181


[11] S. Stansfield, Primitives, features, and exploratory procedures: Building a robot tactile perception system, in:545

Robotics and Automation. Proceedings. 1986 IEEE International Conference on, Vol. 3, IEEE, 1986, pp. 1274–546

1279.547

[12] S. Chitta, J. Sturm, M. Piccoli, W. Burgard, Tactile sensing for mobile manipulation, Robotics, IEEE Transactions548

on 27 (3) (2011) 558–568.549

[13] A. Schneider, J. Sturm, C. Stachniss, M. Reisert, H. Burkhardt, W. Burgard, Object identification with tactile550

sensors using bag-of-features, in: Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International551

Conference on, IEEE, 2009, pp. 243–248.552
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