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Abstract  

The circadian clock coordinates plant physiology and development. Mathematical clock 

models have provided a rigorous framework to understand how the observed rhythms 

emerge from disparate, molecular processes. However, models of the plant clock have 

largely been built and tested against RNA timeseries data in arbitrary, relative units. This 

limits model transferability, refinement from biochemical data and applications in synthetic 

biology. Here, we incorporate absolute mass units into a detailed model of the clock gene 

network in Arabidopsis thaliana. We re-interpret the established P2011 model, highlighting a 

transcriptional activator that overlaps the function of REVEILLE 8/LHY-CCA1-LIKE 5. The 

U2020 model incorporates the repressive regulation of PRR genes, a key feature of the most 

detailed clock model KF2014, without greatly increasing model complexity. We tested the 

experimental error distributions of qRT-PCR data calibrated for units of RNA transcripts/cell 

and of circadian period estimates, in order to link the models to data more appropriately. 

U2019 and U2020 models were constrained using these data types, recreating previously-

described circadian behaviours with RNA metabolic processes in absolute units. To test their 

inferred rates, we estimated a distribution of observed, transcriptome-wide transcription rates 

(Plant Empirical Transcription Rates, PETR) in units of transcripts/cell/hour. The PETR 

distribution and the equivalent degradation rates indicated that the models‘ predicted rates 

are biologically plausible, with individual exceptions. In addition to updated clock models, 

FAIR data resources and a software environment in Docker, this validation process 

represents an advance in biochemical realism for models of plant gene regulation. 

 

keywords: systems biology, circadian rhythms, biological clocks, mathematical modelling, 

parameter estimation, RNA metabolism, transcriptional regulation, Arabidopsis thaliana. 
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1. Introduction  
The circadian clock in plants temporally coordinates an extensive repertoire of 

developmental and physiological processes. These include seedling establishment, 

photosynthesis, cell division, and flowering time, amongst others. Its physiological relevance, 

architecture and response to environmental signals have been extensively reviewed (Millar 

2016; Nohales and Kay 2016; Sanchez et al. 2020). The fact that mutations of the clock 

genes have such pleiotropic effects can be explained at the molecular level, by observations 

that more than 30% of the Arabidopsis thaliana transcriptome exhibits circadian rhythmicity 

(Covington et al. 2008; Edwards et al. 2006; Harmer et al. 2000). The seminal timeseries 

studies have been repeated in other species, demonstrating how the Arabidopsis results 

translate into crops (Edwards et al. 2018; Li et al. 2019; Matsuzaki et al. 2015; Müller et al. 

2020, 2016). Studies of seasonal timing (phenology) in crops are also uncovering the effects 

of clock genes that are homologous to those first identified in Arabidopsis, and the impact of 

Genotype x Environment interactions (Bendix et al. 2015; Millar 2016). Understanding the 

clock gene circuit and its outputs to physiology and phenology therefore holds promise to 

guide further breeding and/or engineering of crop varieties (Preuss et al. 2012 p. 32) and the 

clock regulation of RNA levels is of particular interest.  

 

Arabidopsis thaliana remains a critical, model organism for prototyping the theoretical and 

experimental tools that are subsequently combined with the methods from crop science. 

Systems biology approaches have long been applied to understand the complex mechanism 

of the Arabidopsis clock gene circuit, as noted in the reviews cited above, and introduced in 

detail below. However, even this paradigmatic system still falls short of the resources that 

are required to understand (explain and predict, quantitatively and mechanistically) how 

genome sequence variation at single base-pair resolution affects whole-organism traits 

(Millar 2016). This also hampers the selection of the genome sequence that is needed for 

some desired physiology (Marshall-Colon et al. 2017) whereas this possibility is already 

exemplified in other systems, such as the engineering of transcription factor binding sites in 
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E. coli (Barnes et al. 2019). Aspects of the plant clock mechanism based on RNA 

metabolism have been more tractable than protein regulation to date, whether in RNA 

processing (James et al. 2012) or as here in transcriptional regulation (Kang et al. 2018; Lin 

et al. 2020; Xu et al. 2020). Even at this level, current models of plant gene regulatory 

networks represent their RNA components with arbitrary mass units, and hence their 

transcription and translation rates likewise. This practice is inherited from the experimental 

methodology, where RNA abundance is typically normalised to an internal standard for 

quantification (Czechowski et al. 2005), yielding data in arbitrary, relative units. 

 

Refactoring the models to use absolute mass units would not only be a step towards 

engineering but should also allow more discriminating tests of model validity. First, any 

estimated parameter value should fall within a realistic distribution for the cognate 

biochemical process. Such a distribution is hard to generalise in arbitrary units. This test can 

already discriminate between models and reveal the system‘s evolutionary constraints, as 

shown for enzymatic reactions (Bar-Even et al. 2011). Collating biochemical parameter 

measurements to form an expected distribution is therefore beneficial (Jolley et al. 2014), 

similarly to the collation of trait data for physiology (Poorter et al. 2010), but has been rare 

for plant gene regulation (Millar et al. 2019). Here, we aim to contribute at this level. Second 

and more obviously, biochemical measurements should directly test the particular parameter 

values in the model, improving the model‘s realism over time.  

 

This approach is most relevant to models that focus on biochemical fidelity  (Fogelmark and 

Troein 2014; Locke et al. 2005b; a; Pokhilko et al. 2010, 2012, 2013; Zeilinger et al. 2006). 

Other clock models have used greater levels of abstraction to emphasise operating 

principles (De Caluwé et al. 2016, 2017; Foo et al. 2016, 2020) or to gain computational 

tractability when studying large ensembles (Greenwood et al. 2020). Our interest in linking 

genome sequence mechanistically to complex plant phenotypes requires significant 
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biochemical and biophysical detail, so we consider two of the most detailed models 

available, referred to as P2011 (Pokhilko et al. 2012) and KF2014 (Fogelmark et al. 2014).  

 

1.1 The clock mechanism represented in the models 
Both models represent a set of interlocking, transcriptional, negative feedback loops, in 

which the clock genes control each other‘s expression at particular times of day, through 

their short-lived proteins (Figure 1a; Supplementary Table 1). 24-hour rhythms of gene 

activity with characteristic waveforms emerge from the gene network models‘ dynamics, 

without a single ‗rhythm generator‘. Clock gene expression is affected by several light input 

pathways, so the biological rhythms are entrained to the day/night cycle. Both models reflect 

the rhythmic expression profiles of clock components observed in several light conditions 

and mutant backgrounds with good fidelity, and in real time units.  

 

Starting at dawn, expression of the highly-homologous LATE ELONGATED HYPOCOTYL 

(LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) genes peak simultaneously. The 

myb-related LHY and CCA1 proteins in the plant repress the PSEUDO RESPONSE 

REGULATOR gene family (PRR9, PRR7, PRR5 and TOC1 = PRR1), and of GIGANTEA 

(GI), LUX-ARHYTHMO (LUX), EARLY FLOWERING 3 (ELF3) and EARLY FLOWERING 4 

(ELF4)   la ad   et al. 2001; Kamioka et al. 2016; Mizoguchi et al. 2002; Nagel et al. 2015; 

Nakamichi et al. 2010; Schaffer et al. 1998; Wang and Tobin 1998). The latter, ‗evening 

genes‘ are repressed until LHY and CCA1 protein levels fall during the day, whereas the 

PRR genes are expressed in a sequence from the early morning through the day until after 

dusk (Fujiwara et al. 2008; Nakamichi et al. 2010), and repress the expression of CCA1 and 

LHY. Matching the observed PRR dynamics in the precursor model of P2011 required a 

transcriptional activator function (Pokhilko et al. 2010). Some members of the 

REVEILLE/LHY-CCA1-like family of transcription factors, which are dawn-expressed genes 

homologous to LHY and CCA1, were later observed to function as transcriptional activators. 

Family members notably RVE8/LCL5 have been shown to interact with a family of 
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transcriptional co-activators termed NIGHT LIGHT-INDUCIBLE AND CLOCK REGULATED 

GENES, the LNK1-LNK4 family (Rugnone et al. 2013), which were not represented in either 

model. The evening-expressed genes LUX, ELF4 and ELF3 together produce the hetero-

trimeric protein Evening Complex (EC) (Nusinow et al. 2011), which binds to the promoters 

of PRR9, TOC1/PRR1, LUX, ELF4 and GI and represses their expression, in turn allowing 

LHY and CCA1 expression on the next cycle. 

 

The P2011 and KF2014 models differ in their representation of several, relevant components 

and interactions (please see Supplementary Information). Our approach here is to re-factor 

the P2011 model to use absolute mass units, generating two alternative models, termed 

U2019 and U2020. The U2019 model is close to the P2011 model, whereas U2020 is 

revised to include key interactions from the KF2014 model in this simpler context. We use 

multiple data sources from the literature to test aspects of the models that were not 

previously accessible, in particular the models‘ inferred transcription rates.  

 

2. Materials and Methods  
All experimental data have been published elsewhere. The key results for model fitting 

derived from the TiMet project funded under the EU Framework Programme 7, and are 

publicly available as described (Flis et al. 2015). Other data sources are cited in the text. All 

model analysis was performed using python 2.7, in the computational environment described 

below and available as described in the Reproducibility section (section 2.4). 

 

2.1 Model analysis and availability 
The P2011 model was translated from MATLAB (Pokhilko et al. 2012) into the high-level 

Antimony language and then translated into SBML using the python package Tellurium (Choi 

et al. 2018). The model translations of P2011 are available in the public FAIRDOMHub 

repository at https://fairdomhub.org/assays/1219.  The KF2014 model was originally written 

in clocksim (http://cbbp.thep.lu.se/activities/clocksim/F2014-20140425.tar.gz) (Fogelmark et 
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al. 2014). As a contribution to the community, we also translated one of the 

parameterisations of the KF2014 model into Antimony and SBML, available at 

https://fairdomhub.org/studies/508. The U2019 and U2020 models were developed and 

analysed using Tellurium. Multiple versions of the model files including equations to 

generate light:dark cycles are available from the live data record at 

https://fairdomhub.org/investigations/170, which may include updated versions, and from the 

static ―snapshot‖ (see section 6, Model and Data Availability). The minimal SBML files are 

directly accessible using the root path www.fairdomhub.org/models/. Each model can be 

accessed by appending the FAIRDOMHub ID listed below, for example U2019.1 can be 

accessed as www.fairdomhub.org/models/726, and similarly for U2019.2 (727), U2019.3 

(728), U2020.1 (729), U2020.2 (730) and U2020.3 (731). Equations and parameter values 

were extracted for publication from these files using COPASI version 4.30.240 (please see 

Supplementary Information). SBML model files that include a standard light:dark function, 

the Input Signal Step Function (Adams et al. 2012) are included in the static snapshot of 

these and further resources for this publication (section 6, Model and Data Availability; 

Supplementary Information). 

 

2.2 Model fitting 
To estimate parameter values by comparison to experimental data, SBML models were 

imported into the SloppyCell python package (Myers et al. 2007). Step functions in 

SloppyCell were included to simulate diurnal changes of light conditions. Models were 

entrained for 10 cycles of 24 hours with 12 h of light and 12 hours of darkness, and the 

match to RNA timeseries data was tested using the χ2 statistic, as follows. The TiMet data 

set for RNA profiles in one Light:Dark cycle (LD) followed by constant light was compared to 

simulations for the same conditions on simulation days 11 to 13, with constant light from 

dawn on day 12. To test the simulated rhythmic periods, the period of the cLm variable 

(CCA1/LHY mRNA) was measured in simulated data starting from 276 h (12h after the start 

of constant light), except for the long-period prr79 mutant which used data from 300 h, and 
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the cEC variable was used for the lhy/cca1 double mutant. The target period values for each 

genotype are described in Table 1.  

 

To update the parameter values to better match experimental data, all the parameters in the 

model were allowed to vary except for the Hill coefficients and the set (m11, m27, m31, m33, 

n14, n5, n6, p15, p6, p7). This set contains parameters related to CONSTUTITIVE 

PHOTOMORPHOGENESIS 1 (COP1) which were inferred previously using data for 

ELONGATED HYOCOTYL 5 (HY5) and LONG HYPTOCOTYL IN FAR-RED (HFR1) 

proteins in separate experiments (Pokhilko et al. 2012), and parameters controlling the 

dynamics of the hypothetical protein P. Parameter sets were updated using the Levenberg-

Marquardt method of SloppyCell. When fitting scaling factors, we used the sensitivity 

equation functionality built into SloppyCell, which updates efficiently by determining the 

direction of largest gradient change in the cost function landscape (Myers et al. 2007). For 

ad hoc constraints, such as period values and amplitude, SloppyCell provides prototype 

methods that were adapted to implement a gradient by finite difference approach. The TiMet 

timeseries data and period constraints were not sufficient to enforce oscillatory dynamics in 

constant light conditions, for the models described in this work, hence amplitude constraints 

were also included. The modified SloppyCell codebase was documented with git and is 

available from https://github.com/jurquiza/SloppyCell_Urquiza2019a.  The modifications are 

highlighted in the code base with the string ―Uriel‖.  

 

2.3 Stepwise development of model U2020.1 from U2019.1 

To replace the PRR activation cascade in model U2019.1 with a repression cascade, we 

introduced a new set of variables that represent the PRR genes, with the revised regulation. 

The repressive function of CCA1/LHY (cL) and its activating derivative (cLmod) were retained. 

The new equations did not initially feed back into the original equations, to avoid wholesale 

modification of the model‘s behaviour. The parameters for these ―dummy‖ equations were 

fitted to PRR profiles simulated from U2019.1 using the Levenberg-Marquardt algorithm of 
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SloppyCell. The original PRR equations could then be replaced with the new equations, with 

only minor changes to model behaviour. The new model was then fitted to data simulated 

from U2019.1 for the entire set of variables, conditions and mutants present in the TiMet 

data set (leaving only parameters associated with COP1 and P fixed, as noted). The aim 

was to recover P2011 behaviour using the update network topology resulting in the model 

U2020.1 

 

2.4 Reproducibility 
We developed a Docker image (uurquiza/urquiza2019a_tellurium_sloppycell:latest) to 

ensure the reproducibility of computational results. The image is publicly available from the 

Docker hub (https://hub.docker.com) and from https://fairdomhub.org/assays/1224. After 

installing the Docker software, the image can be downloaded by typing docker pull 

image_name. The image can also be built from source code available in the git repository 

https://github.com/jurquiza/Urquiza2020a. This repository contains instructions for 

installation and for running the Docker image, which compiles all the required tools for model 

fitting to oscillatory dynamics. The fitting is described in Jupyter notebooks in the same git 

repository.  These are linked from the resource snapshot for this publication (see section 6, 

Model and Data Availability). 

 

3. Results 
Before re-factoring the P2011 model to use absolute units, two aspects of this model were 

reconsidered in the light of recent evidence and insights from the KF2014 model (introduced 

in the Supplementary Information). 

3.1 Transcriptional activation in the P2011 model and simulation of 
REVEILLE 8  

We and others have focussed on the prevalence of negative regulation in the Arabidopsis 

clock circuit, and on transcriptional repression in particular. The P2011 model also includes 

transcriptional activation by the variable Lmod (denoted cLmod in written model equations, or 
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cLm in P2011 in SBML format). Lmod activates the expression of the later-peaking PRR 

genes PRR7 and PRR5 (Figure 1a; PRR5 is identified with the Night Inhibitor predicted by 

the P2011 model). Lmod was first proposed in the earlier P2010 model, where this 

hypothetical component was required to match the extended profile of PRR gene expression 

(Pokhilko et al. 2010). It is represented as a modified version of the model‘s combined 

CCA1/LHY protein L. Lmod functions only as a transcriptional activator (Pokhilko et al. 

2010), whereas the unmodified protein acts as the known repressor of evening genes, and 

to activate early PRR gene expression. CCA1 protein was known to be phosphorylated in a 

manner that altered DNA binding (Andronis et al. 2008), suggesting one potential 

biochemical mechanism for the modification. Slow conversion of L into Lmod leads to peak 

accumulation of Lmod  at ZT 6.5 h (Figure 1b), providing a peak of activation at midday. The 

RNA variable that represents CCA1 and LHY transcripts peaks just after dawn, in line with 

the experimental data. Therefore, the model includes a 6 h lag between the transcript 

peaking time and maximal accumulation of Lmod. This effective solution matched the 

observed expression profiles of the PRR genes and, given the lack of constraining evidence, 

it was presented as a parsimonious but phenomenological construct. 

 

Interestingly, the REVEILLE 8 / LHY-CCA1-LIKE 5 (RVE8 / LCL5) gene product presents 

very similar behaviour (Rawat et al. 2011). The levels of RVE8 transcript peak at dawn and 

RVE8 protein levels peak 6 h later (Figure 1b, RVE8-HA). In order to test whether Lmod in 

the model recapitulated the functions of RVE8 in the plant, we sought to replicate two 

published perturbations of RVE8. The rve8 mutant has a late rise of CCA1 transcript under 

constant light conditions. Setting the transformation rate of L to Lmod (parameter p3) to zero 

in P2011 replicated the mutant phenotype (Figure 1c, rve8). This manipulation delays the 

repression of CCA1 transcription and results in a later peak and long circadian period in 

constant light, also matching luciferase imaging data (Farinas and Mas 2011; Rawat et al. 

2011). Experimental overexpression of RVE8 (in RVE8-OX transgenic plants) results in 

period shortening (Farinas et al. 2011; Rawat et al. 2011; Shalit-Kaneh et al. 2018), whereas 
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simulating constant high levels of Lmod resulted in arrhythmia. Though Lmod resembled 

RVE8 in the loss-of-function test, it did not recapitulate the simplest simulation of RVE8 

overexpression.  

 

We therefore tested whether an alternative mechanism could explain the behaviour of 

RVE8-OX, reasoning that RVE8 might function as a required component of a hypothetical 

Noon Complex (NC) of proteins, which collectively form the transcriptional activator. If other 

components of the complex are also rhythmically regulated with peak abundance around 

ZT6, then RVE8 overexpression might accelerate NC formation without altering its peak 

time. Increasing the transformation rate of L into Lmod (parameter p3) simulated this effect, 

and recapitulated the early rise of CCA1 transcript that is observed in the RVE8-OX 

genotype, along with its short period (Figure 1c) (Rawat et al. 2011).  

 

Experimental data from studies of the LNK protein family (Rugnone et al. 2013) is consistent 

with the existence of a rhythmic Noon Complex. The LNK gene family is expressed in the 

morning and mutants of LNK genes present slower clocks, similar to the RVE family (De 

Leone et al. 2019; Hsu et al. 2013). Interaction between RVE and LNK proteins is reported in 

vivo (Xie et al. 2014) but plants that constitutively express both RVE8 and LNK1 do not show 

continuous interaction between these proteins. Rather, co-immunoprecipitation timeseries 

show that their interaction is still phase-specific (Pérez-García et al. 2015) (supplementary 

data). This result suggests that a third, rhythmically expressed component is required for 

complex formation (see Discussion, section 4.1), in line with the proposed Noon Complex. 

Lmod was proposed on functional grounds and might represent a functional Noon Complex 

more closely than it represents the individual, molecular constituent RVE8. 

 

However, increasing the L -> Lmod transformation rate by increasing the parameter p3 both 

increases Lmod and decreases L concentrations. Therefore, we dissected this dual effect 

(Figure 1d). Simulating only the increase of Lmod accumulation without impacting L levels, 
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by introducing a dummy parameter that scales p3 only for the Lmod synthesis equation, did 

not recapitulate the RVE8-OX phenotype, indicating that the post-translational, inhibitory 

effect on CCA1/LHY function is required in the model. This might represent RVE8 binding 

competitively with CCA1/LHY to DNA or inhibiting co-repressor recruitment by CCA1/LHY in 

the plant. We note that genetic evidence from the quintuple mutant lhy/cca1/rve468 has 

been taken to suggest antagonism between the function of these RVE proteins and 

CCA1/LHY (Shalit-Kaneh et al. 2018). Analysis of Protein Binding Microarray profiles 

(Franco-Zorrilla et al. 2014) showed a significant correlation between the DNA binding motifs 

of CCA1 and RVE1 (no data are available for RVE4, 6 or 8), whereas the binding site 

preferences of CCA1 and LUX differed more in the same comparison (Supplementary Figure 

1) even though LUX shares the Evening Element target sequence. This result is not 

surprising, as proteins that share DNA binding domain sequences also tend to have similar 

binding motifs  O‘Malley et al. 2016; Weirauch et al. 2014). Nonetheless, our analysis 

supports the notion that competition for DNA binding might mediate the observed genetic 

antagonism, and our simulations suggest that this or another inhibitory mechanism 

contributes to the phenotype of RVE8-OX plants. The existing behaviour of Lmod concisely 

represents these effects. There is insufficient justification to complicate the model by 

representing the Noon Complex explicitly, with a time-constrained interaction of RVEs, LNK1 

and an unknown, third component(s) (see Discussion section 4.1). 

 

Finally, the formation of the Evening Complex in the model was revised to address a 

technical issue, relating to the form of the relevant equations (please see Supplementary 

Information; Supplementary Figure 2). The revision emphasised the role of the Evening 

Complex in the damped, short-period oscillations that  remain in the lhy;cca1 double mutant. 

The process for simulating this mutation was also revised, to remove only transcriptional 

repression by LHY/CCA rather than all the functions of  both L and Lmod (see 

Supplementary Information). The baseline U2019 model for this study retained the arbitrary 
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mass units as in P2011 but used the insights and updates outlined above, which should also 

be relevant to other clock models (Fogelmark et al. 2014; Pokhilko et al. 2013) 

 

3.2 Development of the U2019.1 model 

The updated model equations were initially fitted to simulation results from P2011 using the 

SloppyCell software (Myers et al. 2007), in order to recreate dynamics similar to P2011. The 

fitting process used simulated wild type plants (WT), and the mutants lhy/cca1, prr7/9, toc1, 

gi and ztl. The ztl mutant is important for constraining the decay rate of TOC1 protein, 

though it is absent from the TiMet RNA timeseries data used below. This first model takes 

the name U2019.1 (available from https://www.fairdomhub.org/models/726). Figure 2a 

outlines the nomenclature of subsequent model versions, while Figure 2b shows the 

contributing software and resources.  

 

3.3 Structural changes for PRR regulation (backward temporal inhibition) in 
U2020.1  

In P2011 the wave of PRRs is a consequence of mutual activation, in order CCA1/LHY 

(Lmod) -> PRR9 -> PRR7 -> PRR5 (Figure 1a). Experimental evidence suggests repressive 

activity for the PRRs (Nakamichi et al. 2012, 2010; Huang et al. 2012; Gendron et al. 2012; 

Liu et al. 2013), suggesting a mechanism in which a wave of inhibition CCA1/LHY (Lmod) |-- 

PRR9 |-- PRR7 |-- PRR5 |-- TOC1 can produce similar peak times (Figure 3a). This 

mechanism was partially introduced in the P2012 model, where TOC1 inhibits PRR9 

transcription (Pokhilko et al. 2013). Other modelling efforts expanded this idea to further 

PRRs (Fogelmark et al. 2014; Foo et al. 2016). Analysis of Foo et al. (2016) showed that 

repression results in cuspidate (sharp) peaks of gene expression, which could generate 

larger rhythmic amplitudes. High-amplitude regulation (100- to 1000-fold changes in RNA 

level) was a striking feature of the TiMet RNA timeseries, suggesting this mechanism could 

improve the model. Therefore, we updated the PRR activation chain to a repressive 

mechanism (Figure 3a), in a conservative, stepwise approach (see Methods section 2.3), 
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ending with a broad re-optimisation of parameters to fit data simulated from U2019.1. Figure 

3b shows simulated PRR7 RNA timeseries from an intermediate stage. Through this 

approach, the repression-wave model U2020.1 recovered behaviours similar to the 

activation-wave model U2019.1, illustrated by the simulated PRR7 transcript (Figure 3c), 

which also shows the short period expected in simulations of the toc1 mutant. The U2020 

model thus represents an intermediate between P2011 and the greater complexity of 

KF2014 (Fogelmark et al. 2014). With the U2019 and U2020 model circuits in hand 

(Supplementary Figure 3), we next develop a method to use transcript data in absolute units 

to recalibrate the plant clock models. 

 

3.4 Data description  

Flis et al (2015) performed absolute quantification of clock RNA transcripts, reporting data as 

average RNA copies/cell. The transcript collection consists of LHY, CCA1, PRR9, PRR7, 

PRR5, TOC1, GI, LUX, ELF3, ELF4 and GAPDH. Timeseries studies that follow the 

emerging recommendations for quantification of these transcripts (Hughes et al. 2017)  were 

performed in WT plants and four clock mutants (lhy-21/cca1-11, prr9-11/prr7-11, toc1-101 

and gi-201). This provides a reference dataset for the transcriptional dynamics of plant clock 

models. Moreover, these data do not require internal normalising transcripts, reducing the 

risk of waveform distortion to the clock transcripts due to normalisation factors that might not 

remain constant over time. 

 

3.5 The experimental error in calibrated qRT-PCR data 
Biochemically-realistic models in molecular biology generally present a large number of 

parameters. Experimental approaches for determining these parameter values directly can 

be extremely challenging. A model-based approach can be taken for estimating parameter 

values from time-series data of observed variables, such as the RNA timeseries used to 

develop the earlier clock models, discussed above. If the experimental error is well 
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characterised, then a maximum likelihood approach can be taken. In particular, if the 

experimental error follows a normal distribution then the following likelihood function can be 

used,   
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(1) 

 

This measures the probability of data D being generated by a model M with a parameter 

vector θ. Experimental measurements are represented by yki with uncertainty σki. Model 

predictions for the measurements yki are given by yk(ti,θ). The k index denotes state 

variables, while the i index represents time points. A maximum likelihood estimate for the 

model parameters can be found by minimising the difference between model predictions and 

data (Figure 4a), and this general approach has been widely used. However, the nature of 

the experimental uncertainty  ‗error‘) is important in the inference process and this has  een 

relatively neglected. The nature of the errors depends on the methodology used for 

gathering the experimental data (Raue et al. 2013).  

Experimental error has been characterised in the context of the Arabidopsis clock, using 

RNA-seq data (Mombaerts et al. 2016).  The TiMet data set used calibrated qRT-PCR data 

in units of [molecules] [cell]-1, which need not have the same error distribution. Though the 

method avoids normalisation to an internal reference RNA, nonetheless Flis et al (2015) also 

quantified the transcript level for a common reference gene Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) using primers for both ends of the mRNA, in all the clock mutant 

backgrounds tested and across the 72 hours of sampling. These results for a nominally-

constant RNA provide an opportunity to characterise the experimental error of this 

methodology. 
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We compared the raw qRT-PCR data of GAPDH to the expected theoretical quantiles for a 

normal distribution. We observed departure from normality at both tails of the distribution, for 

 oth the 5‘ and 3‘ UTR of G PDH  Figure 4 ). It has  een reported that experimental error in 

the determination of molecular levels of components can be described by log-normal models 

(Furusawa et al. 2005; Kreutz et al. 2007; Raue et al. 2013). We transformed the data by 

taking the natural logarithm, termed log-transformed data by convention. log-transformation 

of the data resulted in a better match to normality (Figure 4b). Therefore, data was log-

transformed for evaluating model costs. Furthermore, thanks to the large number of data 

points reported by Flis et al (n > 600), we were able to estimate the associated uncertainty 

 5‘-UTR, σ = 0.95; 3‘-UTR, σ = 0.34), which might  e expected in other data similar to the 

TiMet study. The uncertainties derived from biological replicates at each time point are 

preferred (n=2 in the TiMet data). Where a replicate is missing, the inferred uncertainty 

 using the average of the 5‘-UTR and 3‘-UTR values) provided a reasonable proxy. In case 

the value of the experimental error cannot be determined empirically, the researcher can 

attempt to infer the experimental noise during the parameter inference (Raue et al. 2013). A 

more extreme scenario is when the nature of the error function is unknown or difficult to 

determine. In this case an ―error model average‖ likelihood approach could  e taken (Kinney 

et al. 2010).   

 

3.6 Period constraints  
Circadian period estimates are the second data type used for model fitting, and these are 

available for the WT and for several mutants. It has been generally assumed that the error in 

period estimates follows a normal distribution. To test this, we analysed publicly available 

period estimates for transgenic Arabidopsis plants that report that transcriptional activity of 

two clock promoters, CCA1p:LUC and TOC1p:LUC, tested in longitudinal imaging assays. 

The data were deposited in Biodare (https://www.biodare.ed.ac.uk/, experiment ID 

12730563219125). Testing for departure from normality results in non-significant measures 

both for CCA1p:LUC (statistic=1.01, p-value=0.6) and for TOC1p:LUC (statistic=0.078, p-
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value=0.67), (Figure 4c)  D‘ gostino and Pearson 1973; D‘ gostino 1971). Therefore, the 

period data are well represented by a normal distribution, with σ = 0.52 for CCA1p:LUC and 

σ = 0.71 for TOC1p:LUC. Our period constraints derived from imaging studies using 

CCA1p:LUC, so the cognate standard deviation was incorporated into the likelihood function.  

 

3.7 Linking U2019.1 and U2020.1 to TiMet time-series and period constraints.  
With confidence in our normality assumptions, we next linked the models to the TiMet data 

set. First, we introduced mass scaling factors for each transcript variable. These result only 

in a change in the units of RNA variables, which is obtained by multiplying each transcription 

rate by its scaling factor and dividing the cognate translation rate by the same factor. We 

fitted the scaling factors of U2019.1 and U2020.1 to log-transformed TiMet RNA timeseries 

data using SloppyCell. The resulting, rescaled models are named U2019.2 and U2020.2, 

and have units of [transcripts][cell]-1 for the transcript variables (Supplementary Figure 4). Up 

to this point, however, the dynamic behaviour of the models was constrained by the 

behaviour of the P2011 model, not by the experimental timeseries. 

 

The rescaled models were then fitted to the TiMet RNA timeseries for WT, lhy/cca1, prr7/9, 

toc1 and gi mutants, and to the corresponding period estimates of transgenic plants with 

these genotypes in constant light (Table 1). The period of the ztl mutant was again included 

to constrain the degradation rates of TOC1 protein. The resulting models are named 

U2019.3 and U2020.3, derived from U2019.2 and U2020.2 respectively. Figure 5 shows a 

sample of the fitted time-series, from simulations which correspond to Col-0 WT data for 

LHY, PRR7, TOC1 and LUX. Table 1 shows that both models matched the target periods 

very closely. Furthermore, both models corrected the phase delay that the P2011 model 

showed upon transfer from Light:Dark (LD) cycles to constant light (compare Figure 5 to 

Figure 1d), when the model‘s rapid degradation of PRR proteins in darkness is lost (Flis et 

al. 2015). The repression-based model U2020.3 shows a higher amplitude of RNA 

regulation, closer to the data for LHY, PRR7 and LUX (see Discussion section 4.3). Overall, 
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we observe a slightly better fit to the data for U2019.3 (total cost 6.16x106) compared to 

U2020.3 (total cost 1.02x107), and U2019.3 has slightly fewer parameters (99 compared to 

103, Supplementary Table 1). Updating the regulatory mechanisms did not guarantee an 

improved fit to the data.  

 

Table 2 shows the cost for each individual RNA timeseries in U2019.3 compared to 

U2020.3, highlighting which aspects of model behaviour were affected by the change in PRR 

gene regulation. The U2020.3 simulation of the Col-0 WT returned a better match (lower 

cost value) than U2019.3 for the genes TOC1, PRR7, LHY, LUX and GI. However, the 

absolute cost of PRR9, LHY and GI is higher for both models than for example LUX in 

U2020.3, where the simulated expression profile presents a notably good match to the high-

amplitude regulation in the TiMet data (Figure 5; Supplementary Figure 6).  

 

Compared to the data for clock mutants, simulation of the lhy/cca1 double mutant improved 

the fit for several variables in U2020.3, with moderately increased costs for PRR7 and 

PRR5. The gi mutant data was also better matched by U2020.3, with a particular 

improvement in the simulation of PRR5. U2019.3 matched better than U2020.3 to the data 

for the prr7/9 mutant, where the match of U2020.3 to data for PRR5 expression had the 

greatest cost of all the timeseries. At the other end of the PRR cascade, the toc1 mutant 

data was also better matched by the U2019.3 model, with PRR9, PRR5 and LUX 

contributing to higher costs for U2020.3. Across all the genotypes, the regulation of these 

three transcripts would merit further attention, based on the fitting data from U2020.3. 

 

3.8 A genome-wide transcription rate distribution in absolute units  
The recalibrated models now include transcription rates in absolute units that are compatible 

with the TiMet data and period constraints. The values of these model parameters (or 

strictly, the rates that are realised in simulation) can be taken as predictions of the functional 

rates in vivo. To provide a first-order test of these predictions, we constructed an empirical 
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probability distribution of Arabidopsis transcription rates in units of [transcripts][cell]-1[h]-1, 

matching the model transcription rate parameters. No such data existed but two published 

data sets could be linked to derive the distribution, using simple assumptions.  

 

The first data set consists of microarray transcriptomic measurements of synthesis and 

decay of RNAs in Arabidopsis, obtained in the BBSRC ROBuST project using the labelling 

kinetics of RNA with the ribonucleotide analogue 4SU (Sidaway-Lee et al. 2014), hereafter 

termed the Sidaway-Lee data (Figure 6b). This data includes only 7,291 genes which 

represents 35% of the 20,568 genes in the Arabidopsis genome (BNID 105446  

https://bionumbers.hms.harvard.edu). The distribution has units of [microarray units] [cell]-

1[h]-1. In order to transform the units of the distribution into [transcripts][cell]-1 [h]-1, we 

calibrated the Sidaway-Lee data using the second published data. The ‗Piques data‘ 

comprises measurements at dawn and dusk of 96 transcripts coding for enzymes of 

Arabidopsis central metabolism (Piques et al. 2009), from the same, calibrated qRT-PCR 

method as (Flis Anna et al. 2015). We selected a subset of nine transcripts that were 

measured in both data sets and that changed less than 0.2-fold in level between dawn and 

dusk in the Piques data (Figure 6a). Assuming that no dynamic regulation of their 

transcription rates was taking place in either study, the data should be equivalent.  

 

The recalibration starts from a simple, dynamic model for the production of each transcript,  

 

    
  

        
(1) 

 

where Ms stands for the transcript level, as stands for the transcription rate and b for the 

transcript decay rate, and the subindex s refers to the Sidaway-Lee set. The units in this 

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diab022/6342117 by guest on 11 August 2021

https://bionumbers.hms.harvard.edu/


 

 

equation are [microarray units] [h]-1. We can model a quasi-steady state by setting the 

differential equation to zero and solving for as, 

        (2) 

 

For the Piques data set the same model can be postulated, using parameter subindex p, but 

the transcription rates ap have units of [transcripts][cell]-1[h]-1. The decay constant b of each 

transcript should be equivalent in the two data sets, with units [h]-1, so we omit the 

subindices. The link between the two data sets can be achieved by performing a linear 

regression of Sidaway-Lee vs Piques data sets. The resulting regression model is 

substituted in the Piques quasi steady state equation as follows, 

        (3) 

     (     ) (4) 

 

The gradient g has units of [transcripts][microarray units]-1. We can now compare Sidaway-

Lee data in [microarray units] [h]-1 on the right-hand side of the equation with Piques data in 

[transcripts][cell]-1[h]-1 on the left-hand side. Figure 6c shows a highly significant correlation 

between the data sets (r2 ~ 0.8), and Figure 6d applies the regression to rescale the 

Sidaway-Lee distribution, yielding an average transcription rate of 38.4 in units of 

[transcripts][cell]-1[h]-1, with a one standard deviation span from 12.42-119.7 

[transcripts][cell]-1[h]-1. This distribution should significantly aid the assessment of 

transcription rates in plant gene network models. We refer to it below as the Plant Empirical 

Transcription Rate distribution (PETR, pronounced Peter).  

   

The linear regression approach described above can be tested using data sets that we 
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expect to deviate more from our assumptions, where the correlation r2 should drop. 

Fortunately, Sidaway-Lee et al described microarray studies for plants grown at two different 

temperatures 17 ºC and 27 ºC. The 17 ºC data is used above as those conditions are closer 

to the conditions used by Piques et al. Encouragingly, the 27 ºC data for the same genes 

returns a lower correlation coefficient (r2 = 0.4) (Supplementary Figure 5, compare to Figure 

6c). This result gives some support for the regression model used to develop the PETR 

distribution.  

 

3.9 Challenging predicted transcription rates with the PETR distribution 
We tested the fitted and scaled clock models U2019.3 and U2020.3 by comparing the 

maximum transcription rates reached in simulations to the PETR distribution (Figure 7a, 7b). 

In both models, the transcription rates fall entirely within the distribution, with few in the tails. 

cGm transcription has a relatively high maximum (fast rate) compared to the other clock 

genes, for both models. This could reflect the requirement for strong, acute light activation of 

GI at dawn. In the case of U2019.3, CCA1/LHY presents a similarly fast maximum 

transcription rate, which is lower in U2020.3. For U2020.3, PRR7 presents a rate among the 

highest estimates in the PETR distribution. These results indicate that the model circuits 

developed without the constraints of absolute mass units nonetheless predicted 

biochemically feasible transcription rates, potentially due to constraints on the cognate RNA 

degradation rates.  

 

3.10 Testing the RNA degradation rates of models against the Sidaway-
Lee distribution 

The 4SU-labelling approach also estimated RNA degradation rates (Sidaway-Lee et al. 

2014), so the distribution of these observed rates can likewise test the inferred decay rate 

constants in the U2019.3 and U2020.3 models (Figure 7c, 7d). Again, most decay constants 

fall within the realistic range for Arabidopsis. The clock-associated genes tend to have 

transcripts with a short half-life, consistent with their dynamic regulation. The LHY RNA 

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/advance-article/doi/10.1093/insilicoplants/diab022/6342117 by guest on 11 August 2021



 

 

degradation rate in the light (cLmL) in U2020.3 is at the lower end of the distribution, whereas 

the rate in darkness (cLmD) is at the higher end.  In the case of U2019.3, the PRR9 RNA 

degradation rate is higher than any observed value. The GI RNA degradation rate in both 

U2019.3 and U2020.3 models also falls clearly outside the distribution and is likely to be 

unrealistically high. The PRR5 RNA in the U2020.3 model presents the most extreme value 

of all the transcript degradation rates, and is not biochemically realistic. We offer further 

interpretation of these results in the Discussion. 

 

4. Discussion 
Quantitative modelling of the Arabidopsis circadian clock mechanism has progressed 

significantly over more than 15 years (Bujdoso and Davis 2013). The complexity of the 

models has increased along with the inclusion of experimentally-documented variables 

(Supplementary Table 1). Naturally, most of the work has concentrated on simulating the 

timing of molecular events. The models have been challenged most stringently using 

timeseries data from mutant plants that alter rhythmic period and/or the waveform of clock 

components. Few of the inferred biochemical parameter values in the models could be 

tested against directly measured values, because neither the model parameters nor most of 

the available data were calibrated to absolute mass units that would allow direct 

comparisons. This work offers that calibration, for RNA levels and transcription rates. Our 

results derived from applying data science and modelling approaches to the outputs of three 

linked, systems biology funding awards (see Supplementary Information; Supplementary 

Figure 7). 

4.1 Interpretation of clock models  
Some of the revisions of the P2011 model equations in the new U2019 and U2020 models 

were required to avoid earlier assumptions in the formation of the Evening Complex and had 

little effect on model dynamics, but unfortunately increased model complexity from 28 to 31 

variables. In contrast, recognising the role of transcriptional activation has altered how we 

interpret and use the models, without increasing their complexity. In the P2011 model, the 
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activation required for clock gene expression during the day was captured by a combination 

of CCA1/LHY protein and a modified version termed Lmod, which had to form slowly in the 

model to activate PRR gene expression later in the day. In particular, Lmod regulates PRR5 

in the models (Pokhilko et al. 2012). Given the later discovery and characterisation of the 

RVE and LNK families of transcription factors, we note the similarity between Lmod and 

RVE8 / LCL5, particularly with respect to an enigmatic delay in observed RVE8 protein 

accumulation that matches Lmod. PRR5 is also a key, direct target of RVE8 (Farinas et al. 

2011; Hsu et al. 2013; Rawat et al. 2011; Shalit-Kaneh et al. 2018; Xie et al. 2014). The 

activating function in our models was little discussed (Somers 2012), in part because it pre-

dated the most relevant data.  

 

Both the U2019 and U2020 models matched well to the target period values and RNA 

timeseries in wild-type and mutant plants (Tables 1 and 2; Supplementary Figure 6), though 

the models differ in the mechanisms of PRR gene regulation (Figures 1a and 2a). The 

U2020 model had a slightly higher fitting cost and larger parameter number, so U2019 would 

be preferred a priori. However, the regulatory interactions in U2020, derived from the 

KF2014 model, are better evidenced.  As the number of plant clock models grows, it will be 

increasingly important to compare and document their performance in detail. If this is a 

collaborative effort between the model developers, it may also reveal implicit/tacit knowledge 

(Davies 2001) that is codified in each model, and which is then applied to simulate specific 

biological scenarios, exemplified by our reinterpretation of the lhy/cca1 double mutant.   

 

Identifying Lmod as a model of the observed, daytime transcriptional activator has a 

technical consequence, that simulations of the lhy/cca1 double mutant in several models 

(P2010, P2011, P2012, F2016) should not remove all CCA1/LHY protein but instead should 

selectively remove its repressive effects. Simulating the damped, short-period rhythms in this 

mutant has been technically challenging (Zeilinger et al. 2006). The model retains very few 

feedback loops in this case, so its behaviour is highly sensitive to some of the parameters 
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describing their biochemistry. The challenge remains when activating and repressing 

functions are represented as separate genes (Fogelmark et al. 2014) or as effects on 

separate targets (this work; Flis et al., 2015). High parameter sensitivity is a marker for 

caution in modelling (Morohashi et al. 2002). The lhy/cca1 double mutant simulations 

probably highlight the need for future work, which might have implications for our current 

view of the clock mechanism beyond this special case.  

 

The biochemistry of transcriptional regulation contributes to the modelling challenges. 

Simulation of the clock dynamics in RVE8-OX plants encouraged us to propose the 

presence of a Noon Complex, formed by RVE8 and at least one other rhythmic partner, 

which might correspond more closely to the function of Lmod in the models. The LNK 

proteins are possible partners that interact with RVE proteins (Xie et al. 2014). However, in 

plant lines that constitutively express both RVE8 and LNK1, their interaction is still restricted 

to around ZT7 (Pérez-García et al. 2015), consistent with the requirement for at least one 

further, rhythmic partner. Affinity purification and mass spectrometry (AP-MS) could help in 

elucidating the cryptic component(s) required for NC formation and functionality, as applied 

to the Evening Complex (Huang et al. 2016) or in timeseries of interactions with the GI 

protein (Krahmer et al. 2019). Adding more of these processes explicitly will not only further 

complicate the models but also increase the uncertainty of their outputs, unless the new 

components are constrained by significant, additional data.  

 

4.2 PETR, a constraining distribution of transcription capacity for plant 
systems biology 

By recalibrating our models into absolute units of transcripts per cell using the TiMet qRT-

PCR timeseries, we made it possible to test the modelled transcription rates against 

biochemical data, if such data existed. Though we previously collated distributions of the 

binding affinities measured for plant transcription factors to DNA and for protein-protein 

interactions in Arabidopsis (Millar et al. 2019), we had relied on data from yeast to illustrate 
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the possible transcription rates in plant cells. Integrating two apparently different data sets 

here resulted in the PETR distribution (Figure 6d), which estimates a mean transcription rate 

of 38.4 [transcripts][cell]-1[h]-1, with one standard deviation spanning 12.4-119.7 

[transcripts][cell]-1[h]-1. Yeast for comparison has rates of 2 - 30 [transcripts][h]-1 (Pelechano 

et al. 2010). The higher mean in plants likely relates in part to the difference in size between 

yeast (43 µm3) and Arabidopsis cells (73,000 µm3) (Jorgensen et al. 2002; Wuyts et al. 

2010).  If the parameter values of other models are refactored into absolute units, the PETR 

distribution can be used to assess the resulting transcription rates post hoc. More likely, 

extensions to Bayesian inference, previously applied to the P2011 model (Higham and 

Husmeier 2013), might use the PETR distribution as a prior to constrain parameters to 

plausible values during model development. Directly measuring biochemical parameter 

values, including the absolute transcription rates of the clock genes, is still an important step 

for future model development. 

 

The PETR distribution was derived as a log-normal distribution, following our assessment of 

the distribution of GAPDH qRT-PCR results in the TiMet data (Figure 4). Log-normal 

distributions are pervasive in biology, for example in western blot data (Kreutz et al. 2007). 

The statistical assumptions in parameter inference methods require a good description of the 

experimental noise, but it can be unclear what error distribution is appropriate, for example if 

time series have had to be extracted from data displays in the literature (Fogelmark et al. 

2014). This underlines again the importance of routinely sharing the numerical values of 

biological data, in line with FAIR principles (Findable, Accessible, Interoperable, Re-usable). 

As FAIR applies to secondary as well as primary data, we have registered the key values of 

the PETR distribution in the Bionumbers database (see Model and Data Availability, section 

6) (Milo et al. 2010).   
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4.3 The implications of inferred clock gene transcription rates, and future 
model development 

The key concerns in the parameter values governing the model‘s RNA metabolism arose 

from the high RNA degradation rates predicted for some clock transcripts (Figure 7c, 7d). 

These reflect the timeseries data that the model fitting seeks to match, within the constraints 

of the model equations. Measured GI mRNA levels fall over 1100-fold in the 12 hours after 

dusk in the TiMet data, for example (Flis et al. 2015). The GI mRNA in the model has a 

constant half-life, which must be short enough to match these dramatic decreases in mRNA 

level. However, GI mRNA also accumulated 32-fold in the 2 hours after dawn (Flis et al. 

2015), and even more rapid increases have been observed (Locke et al. 2005). Rapid 

accumulation of this very unstable transcript in turn requires a high, estimated GI 

transcription rate in the models (Figure 7a, 7b), which might be reduced if the degradation 

rate of the GI transcript was also regulated. For transcripts of CCA1/LHY, in contrast, the 

half-life is not constant as the model includes their observed, light-regulated degradation rate 

(Yakir et al. 2007). De-stabilisation of this mRNA in the dark helps to reach lower, trough 

levels in our model simulations (Figure 5) than in P2011 and earlier models (Figure 1b), 

more closely matching the data. Comparing our two models, the CCA1/LHY transcription 

rate is unusually high in the U2019.3 model but less so in U2020.3. One reason for this is 

likely that the difference between light and dark mRNA degradation rates is greater for the 

cognate RNA in U2020.3, in other words, the RNA is much less rapidly degraded in the light 

compared to darkness, lowering the demand on new transcription to match the observed 

RNA levels (Figure 7). Unusually high estimates of RNA metabolism parameters for PRR 

transcripts such as PRR5 might also suggest that these RNAs are post-transcriptionally 

regulated in vivo, as is common in other clock systems (Martelot et al. 2012). 

 

PRR5 RNA expression not only has a high amplitude but also a cuspidate (peaked) 

waveform. Both are indicative of highly non-linear regulation, which might involve both 

regulated RNA stability and high-amplitude transcriptional regulation. The earliest modelling 
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of circadian clocks used large Hill coefficients, which were later considered unrealistic, to 

simulate the cooperativity of transcriptional repressors. Our models conservatively limit the 

non-linearity of transcription factor binding, using Hill coefficients fixed at 2, which models 

the presence of a functional dimer. However, some clock promoters have multiple, similar 

DNA sequence elements that might bind several dimers, and competition between 

alternative binding partners at a single binding site can also generate larger apparent Hill 

coefficients (Buchler and Louis 2008; Kim and Forger 2012; Lee and Maheshri 2012). 

Understanding such competition, for example among the RVEs and other transcription 

factors that bind the Evening Elements, will require the absolute quantitation of the copy 

number of regulatory proteins per cell, the number of genomic binding locations and the 

transcription factor affinity for those locations. Protein quantification is therefore another 

critical step for plant clock models. The low abundance of clock proteins makes this 

challenging, and specific antibodies are available for only a few of the relevant proteins. 

Fusion proteins tagged using either firefly luciferase or NanoLUC offer a convenient 

alternative approach to direct protein quantification (Urquiza-García and Millar 2019). 

Indirect methods might also contribute to this challenge, such as the recently-described 

rhythmic translatome (Bonnot and Nagel 2021). 

 

Future digital organism models will require both simplified but still experimentally-based 

models that facilitate analysis, and also biochemically-realistic models that link to genome 

sequences. These, detailed models should help to mobilise contributions from biochemistry, 

structural and chemical biology, which have influenced work on mammalian and 

cyanobacterial clocks far more than plant chronobiology. The detailed models will also assist 

the model-driven design of plant regulation, using precision genetic technologies such as 

Prime Editing (Lin et al. 2020).  
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5. Model and Data Availability 
The data, models, Docker containers and other resources are shared collectively as a static 

Snapshot, formatted as a Research Object and structured according to the standard ISA 

hierarchy, on FAIRDOMHub.org (doi: 10.15490/FAIRDOMHUB.1.INVESTIGATION.170.2), 

on the Zenodo repository (doi: 10.5281/zenodo.5150793) and on Edinburgh DataShare 

(doi: ??to be added in proof??). The data should be cited as: 

Urquiza Garcia, U. & Millar, A. J. (2021). Absolute units in Arabidopsis clock models up 

to U2020.3 [Data set]. Zenodo. https://doi.org/10.5281/ZENODO.5150793 

The live, updatable resources for individual models are also public on FAIRDOMHub.org, as 

described above in section 2.1, Model analysis and availability. The TiMet RNA timeseries 

data were already publicly available as experimental replicate data from the BioDare 

repository (experiment ID 2814; 

https://www.biodare.ed.ac.uk/robust/ShowExperiment.action?experimentId=2841). The live 

resource on FAIRDOMHub.org presents separate files of mean and standard deviation 

values, as used in this work (Data file IDs 2016 (means) and 2017 (SD), 

https://fairdomhub.org/data_files/2016 and https://fairdomhub.org/data_files/2017). The 

values of the distributions inferred above have been registered with the Bionumbers 

database as follows:  

mRNA degradation rate distribution for Arabidopsis thaliana, mean ID??to be added in 

proof?? and SD ID??to be added in proof??. 

PETR distribution, mean ID??to be added in proof?? and SD ID??to be added in proof??. 
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6. Tables  
 

Table 1. Period constraints enforced in model development. 

The target periods (Enforced) and the observed periods for the U2019.3 and U2020.3 

models are listed, for the Col-0 wild type and the clock mutants tested by simulation. The set 

of target periods is retained from earlier model development (Flis et al. 2015). 

 

Genotype Enforced (h) U2019.3 (h) U2020.3 (h) 

Col-0 24.5 24.5 24.48 

prr7/9 30 30.01 29.99 

lhy/cca1 17 16.7 16.99 

gi 22 22 22 

toc1 

ztl 

21 

27 

20.99 

27.01 

20.98 

27 
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Table 2. Cost function values of the U2019.3 and U2020.3 models compared to the RNA 

time series.  

Higher χ2 values reflect a greater departure of each simulated RNA variable from the 

cognate TiMet RNA data, under one LD cycle followed by LL. A higher Ratio between these 

values reflects a greater departure of the U2020.3 simulation from the data, compared to 

U2019.3. Variable names are listed as the SBML variable identifiers; the cognate RNA data 

are as follows: cT_m, TOC1; cP7_m, PRR7; cP9_m, PRR9; cP5_m, PRR5; cE3_m, ELF3; 

cE4_m, ELF4; cL_m, LHY; cLUX_m; cG_m, GI. Some RNA species are absent in the 

mutants. The ‗log‘ prefix denotes the log-transformation of both data and simulated values. 

Ratios above 1 are bold-faced and highlighted in red 

  

model χ2 

 Genotype Variable U2019.3 U2020.3 Ratio 

WT (Col-0) 

    

 

log_cT_m 6616.39 1872.18 0.28 

 

log_cP7_m 3049.33 1945.31 0.64 

 

log_cP9_m 1096000.94 2360519.61 2.15 

 

log_cP5_m 7154.91 57504.36 8.04 

 

log_cE3_m 11024.96 13146.04 1.19 

 

log_cE4_m 1086.76 1279.85 1.18 

 

log_cL_m 720144.18 161622.64 0.22 

 

log_cLUX_m 1951.47 743.42 0.38 

 

log_cG_m 100108.26 73998.62 0.74 

gi 
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log_cT_m 447.70 2126.95 4.75 

 

log_cP7_m 467650.36 343409.45 0.73 

 

log_cP9_m 73798.39 112937.04 1.53 

 

log_cP5_m 1162418.53 429889.14 0.37 

 

log_cE3_m 692.91 1857.66 2.68 

 

log_cE4_m 9729.48 9791.66 1.01 

 

log_cL_m 840604.60 771845.84 0.92 

 

log_cLUX_m 4678.02 4126.69 0.88 

lhy/cca1 

    

 

log_cT_m 3941.60 1563.78 0.40 

 

log_cP7_m 41669.61 94306.14 2.26 

 

log_cP9_m 8724.69 3446.11 0.39 

 

log_cP5_m 351321.63 702794.35 2.00 

 

log_cE3_m 835.21 285.74 0.34 

 

log_cE4_m 18568.11 20089.85 1.08 

 

log_cLUX_m 22099.10 7347.42 0.33 

 

log_cG_m 31712.52 31187.09 0.98 

toc1 

    

 

log_cP7_m 26696.91 43231.76 1.62 

 

log_cP9_m 17762.85 517633.15 29.14 

 

log_cP5_m 29305.91 274211.13 9.36 

 

log_cE3_m 1236.11 3393.01 2.74 

 

log_cE4_m 1228.35 1653.03 1.35 

 

log_cL_m 31066.85 11209.69 0.36 

 

log_cLUX_m 415452.95 1005765.19 2.42 

 

log_cG_m 25564.76 18017.81 0.70 

prr7/9 

    

 

log_cT_m 3498.73 722.99 0.21 
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log_cP5_m 549882.29 3063245.89 5.57 

 

log_cE3_m 2221.08 7760.54 3.49 

 

log_cE4_m 13908.81 9930.81 0.71 

 

log_cL_m 26982.44 17502.82 0.65 

 

log_cLUX_m 24255.14 13117.07 0.54 

 

log_cG_m 8003.18 5281.46 0.66 

Total Chi2 

 

6163096.03 10202313.29 1.66 
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7. Figure Legends 
 

Figure 1  

Transcriptional activation in P2011, compared to expression and function of RVE8.  

a) Simplified diagram locating Lmod in the P2011 model. Arrows, activation; blunt lines (T), 

repression. Solid lines, transcriptional regulation; dashed red lines, posttranslational 

regulation. Yellow circles, light regulation. Genes are represented by round boxes. Relevant 

protein species are represented by circles. The equivalent regulation of CCA1/LHY by each 

PRR protein is indicated by the dashed black box. The proposed Noon Complex (NC) 

formed from RVE, LNK and at least a third unknown component is represented by a pie. b) 

P2011 simulation in L:D cycles (white:dark grey bars) showing the behaviour of CCA1/LHY 

variables cLm (mRNA), cL (protein), cLmod (modified, activating protein) and the similarity of 

cLmod to RVE8 protein data (RVE8-HA, (Hsu et al. 2013)). Peak expression times are 

indicated: 0.6 h cLm, 2.6 h cL and 6.5 h cLmod. c) Simulated perturbations in P2011 in 

Arbitrary Units (A.U.) that reproduce the rhythmic phenotypes of Col-0 (WT), rve8 and 

RVE8-OX plants. The model was entrained for 10 days in L:D cycles (white:dark grey bars) 

before transfer to constant light (white:light grey) at time 0. d) Inhibiting L function is a 

necessary part of Lmod function. RVE8-OX was simulated by increasing the model 

parameter p3 (as in c), purple line) including the inhibitory effect of Lmod formation that 

partly consumes L. In contrast, the RVE8-OX non-inhibitory simulation (non-inh., yellow line) 

generated the same level of Lmod without depleting L, and failed to match the RVE8-OX 

phenotype. Simulations were otherwise conducted as in c) with Arbitraty Units (A.U.). 

Figure 2 

Model development with open and reproducible resources.  

a) Model nomenclature. Model architectures are denoted by author surname and year, with 

versions or parameter sets after a decimal point(s) (Flis et al. 2015). The published P2011.1 

model simulated perfect data (blue). The U2019.1 model derived from P2011.1, without its 
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quasi-steady state assumptions. U2020.1 has the PRR repression cascade (Figure 3 and 

main text). Parameters of both U2019.1 and U2020.1 were fitted to the perfect data of 

P2011.1. Models U2019.2 and U2020.2 were obtained by rescaling only transcription and 

translation rates such that modelled RNA levels matched TiMet RNA data (orange). The 

U2019.3 and U2020.3 models resulted from a near-global re-optimisation to TiMet RNA 

timeseries, period and amplitude constraints (green). b) Reproducibility and wide reuse of 

models requires open data analysis tools. Public reference data of the TiMet project and 

other literature resources informed model development in open languages such as Python 

and Jupyter. The SBML model exchange format is supported by an ecosystem of open-

source software for systems biology, such that models can be written in Antimony, explored 

in Tellurium, and fitted in SloppyCell. Models can then be transferred to Tellurium for further 

analysis. FAIRDOMHub and GitHub are crucial for accessibility and version control. We use 

Docker and DockerHub to disseminate our software environment reproducibly. 

 

Figure 3 

The refactored, repression cascade of PRRs in the U2019 and U2020 models.  

a) Simplified diagram of the CCA1/LHY and PRR gene families in the U2020 model, using 

the same conventions as Figure 1a. The Noon Complex (NC) proposed to function similarly 

to Lmod is shown as a pie, potentially formed from RVE, LNK and at least a third unknown 

component. b) Dynamics of PRR7 transcripts in dummy variables controlled by U2019.1 

under LD cycles then constant light; original, U2019.1 activation model, as in P2011 (dashed 

blue line); proposed, dummy variable for repression model (solid pink line). c) Dynamics of 

PRR7 transcript in U2019.1 (dashed lines) and U2020.1 (solid lines), in WT (blue) and toc1 

mutant (yellow). The derivation of U2020.1 is described in the main text. The models were 

entrained for 10 days in L:D cycles (white:dark grey bars) before transfer to constant light 

(white:light grey) at time 0. 
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Figure 4 

The cost function for model development uses experimental error estimates.  

a) The function used to calculate the cost C(θ), for a parameter set θ compared to data from 

one genotype, sums costs for all datapoints i, comprising the departure of log-transformed, 

scaled by analytically derived Bi scaling factors, simulated variable yi(θ) from the cognate, 

log-transformed RNA timepoint di, scaled by the experimental error estimate σ of that data 

point, and the departure of simulated period τi  from observed period τ, scaled by the 

experimental error estimate σp of that period value and N the number of independent period 

estimates; here, N = 1. Bi scaling factor for  b) and c), the appropriate data transformation is 

inferred by the (mis)match between the distribution of a large set of (b) RNA or (c) period 

measurements and the expectation from the normal distribution (lines). b) quantile-quantile 

plots of GAPDH 5‘ (left panels) or GAPDH 3‘ RNA (right) data for untransformed (upper) and 

log-transformed data (lower), with a better match in the latter. c) shows a good match to 

normality for untransformed period estimates from WT plants carrying a CCA1p:LUC (blue) 

or TOC1p:LUC (yellow) transgene. 

 

Figure 5 

Behaviour of the U2019.3 and U2020.3 models, compared to TiMet RNA data for WT plants.  

RNA levels for four transcripts in Col-0 WT plants are shown, compared to simulation results 

from U2019.3 (solid black line) and U2020.3 (dashed pink line). The higher amplitudes of 

LHY and PRR7 data are better matched by U2020.3. The models were entrained for 10 days 

in L:D cycles (white:dark grey bars) before transfer to constant light (white:light grey) at time 

0. Errors bars for experimental data are 1 S.D., n=2. 
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Figure 6 

Recalibration of the Sidaway-Lee data into units of [transcripts] [cell]-1 [h]-1.  

a) Distribution of expression fold-change values between the two timepoints, for the 96 

Arabidopsis transcripts in the Piques data set. The red band highlights the interval of 

selected transcripts, 1± 0.2. b) Steady state levels of transcripts at 17 ºC in the Sidaway-Lee 

data. c) Linear regression for the log-transformed levels of selected transcripts from the 

Piques data against their levels in the Sidaway-Lee data. d) Sidaway-Lee‘s distribution of 

transcription rates, transformed using the regression into units of log([transcripts] [cell] -1 [h]-

1), compared to a normal distribution (solid line) with maximum likelihood estimation for the 

mean  μ=3.65) and standard deviation  σ=1.13) of the transcription rates. 

 

Figure 7 

Parameters of RNA metabolism inferred in the models, compared to the observed 

distributions.  

a), b) Maximal transcriptional rate parameters relative to the PETR distribution and c), d) 

RNA degradation rate constants relative to the rates measured by (Sidaway-Lee et al. 2014), 

for the U2019.3 model (left panels) and U2020.3 model (right panels). cLmL and cLmD 

indicate decay rates for cLm in light and in darkness respectively. Yellow bars indicate the 

parameter value for each transcript variable. Solid lines show fitted normal distributions with 

unitless parameters μ=3.65, σ=1.13 (a, b) and μ=-1.76, σ=0.62 (c, d).  
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