204 research outputs found

    Stable Sets in {ISK₄,wheel}-Free Graphs

    Get PDF
    An ISK4 in a graph G is an induced subgraph of G that is isomorphic to a subdivision of K₄ (the complete graph on four vertices). A wheel is a graph that consists of a chordless cycle, together with a vertex that has at least three neighbors in the cycle. A graph is {ISK₄,wheel}-free if it has no ISK₄ and does not contain a wheel as an induced subgraph. We give an O(|V(G)|⁷)-time algorithm to compute the maximum weight of a stable set in an input weighted {ISK₄,wheel}-free graph G with non-negative integer weights

    Morphologie, croissance individuelle et dynamique des populations de la tortue verte (Chelonia mydas L.) au banc d'arguin (République islamique de Mauritanie)

    Get PDF
    The carapace morphology and growth of the Green turtle (Chelonia mydas L.) has been studied in a large (n = 177) sample of animals collected by the Imragen fishermen on the Banc d'Arguin (lslamic Republic of Mauretania). The frequency of anomalies of the scales decreases with age in this species, possibly due to a differentiai mortality between normal and abnormal individuals. The mathematical relation between length and width of the carapace is discussed and the Mauretanian data are compared with those of other areas. There are obvious differences in the shape of the carapace between different breeding populations of green turtles, which quite likely correspond to genetic differences between various breeding populations. The Mauretanian green turtles are quite similar to those breeding on the eastern coast of South-America. Seven age classes can be recognized on the basis of the carapace length. A growth curve of the Mauretanian population of Chelonia mydas L., based upon von Bertalanffy equation, is proposed. The rate of growth decreases sharply after the first breeding season. Sexual maturity takes place at 5.5 years of age, but age at first reproduction apparently varies from one population to the other, probably depending upon fishing pressure. The number of "bachelors" (mature individuals not taking part in reproduction) is apparently greater in areas with the smallest fishing pressur

    Polar cap arcs from the magnetosphere to the ionosphere: kinetic modelling and observations by Cluster and TIMED

    Get PDF
    On 1 April 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. About 20 min later, the Cluster satellites detect an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 700 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 500 eV. <br><br> The magnetic footpoints of the ion outflows observed by Cluster are situated in the prolongation of the polar cap arc observed by TIMED GUVI. The upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. <br><br> We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI) coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at the top of the ionosphere corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The computed energy spectrum of the precipitating electrons is used as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes such as photoionization and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are compared to the optical observations by TIMED. They are similar in size and intensity. Data and modelling results are consistent with the scenario of quasi-static acceleration of electrons that generate a polar cap arc as they precipitate in the ionosphere. The detailed observations of the acceleration region by Cluster and the large scale image of the polar cap arc provided by TIMED are two different features of the same phenomenon. Combined together, they bring new light on the configuration of the high-latitude magnetosphere during prolonged periods of Northward IMF. Possible implications of the modelling results for optical observations of polar cap arcs are also discussed

    Lower hybrid resonances stimulated by the four CLUSTER relaxation sounders deep inside the plasmasphere: observations and inferred plasma characteristics

    Get PDF
    International audienceThe frequency range of the WHISPER relaxation sounder instrument on board CLUSTER, 4–80 kHz, has been chosen so as to encompass the electron gyro-frequency, F ce , and the electron plasma frequency, F p , in most regions to be explored. Measurement of those frequencies, which are triggered as resonances by the sounder, provides a direct estimation of in situ fundamental plasma characteristics: electron density and magnetic field intensity. In the late mission phase, CLUSTER penetrated regions deep inside the plas-masphere where F ce and F p are much higher than the upper frequency of the sounder's range. However, they are of the right order of magnitude as to place the lower hybrid frequency , F lh , in the 4–15 kHz band. This characteristic frequency , placed at a resonance of the medium, is triggered by the sounder's transmitter and shows up as an isolated peak in the received spectrum, not present in spectra of naturally occuring VLF waves. This paper illustrates, from analysis of case events, how measured F lh values give access to a plasma diagnostic novel of its kind. CLUSTER, travelling along its orbit, encounters favourable conditions where F ce is increasing and F p decreasing, such that F ce /F p increases from values below unity to values above unity. Measured F lh values thus give access, in turn, to the effective mass, M eff , indicative of plasma ion composition, and to the core plasma-sphere electron density value, a parameter difficult to measure. The analysed case events indicate that the estimated quantities (M eff in the 1.0–1.4 range, N e in the 5 × 10 2 – 10 4 cm −3 range) are varying with external factors (altitude, L value, geomagnetic activity) in a plausible way. Although covering only a restricted region (mid-latitude, low altitude inner plasmasphere), these measurements are available, since Correspondence to: S. Kougblénou ([email protected]) late 2009, for all CLUSTER perigee passes not affected by eclipses (on average, roughly a third of a total of ∼200 passes per year) and offer multipoint observations previously unavailable in this region

    Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 1. Boundary structure and motion

    Get PDF
    We study plasma transport at a thin magnetopause (MP), described hereafter as a thin current sheet (TCS), observed by Cluster at the southern cusp on 13 February 2001 around 20:01 UT. The Cluster observations generally agree with the predictions of the Gas Dynamic Convection Field (GDCF) model in the magnetosheath (MSH) up to the MSH boundary layer, where significant differences are seen. We find for the MP a normal roughly along the GSE x-axis, which implies a clear departure from the local average MP normal, a ~90 km thickness and an outward speed of 35 km/s. Two populations are identified in the MSH boundary layer: the first one roughly perpendicular to the MSH magnetic field, which we interpret as the &quot;incident&quot; MSH plasma, the second one mostly parallel to <b>B</b>. Just after the MP crossing a velocity jet is observed with a peak speed of 240 km/s, perpendicular to <b>B</b>, with <i>M<sub>A</sub></i>=3 and &beta;>10 (peak value 23). The magnetic field clock angle rotates by 70&deg; across the MP. <i>E<sub>x</sub></i> is the main electric field component on both sides of the MP, displaying a bipolar signature, positive on the MSH side and negative on the opposite side, corresponding to a ~300 V electric potential jump across the TCS. The <i>E</i>&times;<i>B</i> velocity generally coincides with the perpendicular velocity measured by CIS; however, in the speed jet a difference between the two is observed, which suggests the need for an extra flow source. We propose that the MP TCS can act locally as an obstacle for low-energy ions (&lt;350 eV), being transparent for ions with larger gyroradius. As a result, the penetration of plasma by finite gyroradius is considered as a possible source for the jet. The role of reconnection is briefly discussed. The electrodynamics of the TCS along with mass and momentum transfer across it are further discussed in the companion paper by Savin et al. (2006)

    Approaches to Modeling Coupled Flow and Reaction in a 2-D Cementation Experiment

    Get PDF
    Porosity evolution at reactive interfaces is a key process that governs the evolution and performances of many engineered systems that have important applications in earth and environmental sciences. This is the case, for example, at the interface between cement structures and clays in deep geological nuclear waste disposals. Although in a different transport regime, similar questions arise for permeable reactive barriers used for biogeochemical remediation in surface environments. The COMEDIE project aims at investigating the coupling between transport, hydrodynamics and chemistry when significant variations of porosity occur. The present work focuses on a numerical benchmark used as a design exercise for the future COMEDIE-2D experiment. The use of reactive transport simulation tools like Hytec and Crunch provides predictions of the physico-chemical evolutions that are expected during the future experiments in laboratory. Focus is given in this paper on the evolution during the simulated experiment of precipitate, permeability and porosity fields. A first case is considered in which the porosity is constant. Results obtained with Crunch and Hytec are in relatively good agreement. Differences are attributable to the models of reactive surface area taken into account for dissolution/precipitation processes. Crunch and Hytec simulations taking into account porosity variations are then presented and compared. Results given by the two codes are in qualitative agreement, with differences attributable in part to the models of reactive surface area for dissolution/precipitation processes. As a consequence, the localization of secondary precipitates predicted by Crunch leads to lower local porosities than for predictions obtained by Hytec and thus to a stronger coupling between flow and chemistry. This benchmark highlights the importance of the surface area model employed to describe systems in which strong porosity variations occur as a result of dissolution/precipitation. The simulation of highly non-linear reactive transport systems is also shown to be partly dependent on specific numerical approaches
    corecore