105 research outputs found

    Rapid Multiplexed Data Acquisition: Application To Three-Dimensional Magnetic Field Measurements In A Turbulent Laboratory Plasma

    Get PDF
    Multiplexing electronics have been constructed to reduce the cost of high-speed data acquisition at the Swarthmore Spheromak Experiment (SSX) and Redmond Plasma Physics Laboratory. An application of the system is described for a three-dimensional magnetic probe array designed to resolve magnetohydrodynamic time scale and ion inertial spatial scale structure of magnetic reconnection in a laboratory plasma at SSX. Multiplexing at 10 MHz compresses 600 pick-up coil signals in the magnetic probe array into 75 digitizer channels. An external master timing system maintains synchronization of the multiplexers and digitizers. The complete system, calibrated and tested with Helmholtz, line current, and magnetofluid fields, reads out the entire 5 x 5 x 8 probe array every 800 ns with an absolute accuracy of approximately 20 G, limited mainly by bit error. (C) 2003 American Institute of Physics

    Hyperpolarized13c mri of tumor metabolism demonstrates early metabolic response to neoadjuvant chemotherapy in breast cancer

    Get PDF
    Purpose: To compare hyperpolarized carbon 13 (13C) MRI with dynamic contrast material–enhanced (DCE) MRI in the detection of early treatment response in breast cancer. Materials and Methods: In this institutional review board–approved prospective study, a woman with triple-negative breast cancer (age, 49 years) underwent13C MRI after injection of hyperpolarized [1–carbon 13 {13C}]-pyruvate and DCE MRI at 3 T at baseline and after one cycle of neoadjuvant therapy. The13C-labeled lactate-to-pyruvate ratio derived from hyperpolarized13C MRI and the pharmacokinetic parameters transfer constant (Ktrans) and washout parameter (kep ) derived from DCE MRI were compared before and after treatment. Results: Exchange of the13C label between injected hyperpolarized [1-13C]-pyruvate and the endogenous lactate pool was observed, catalyzed by the enzyme lactate dehydrogenase. After one cycle of neoadjuvant chemotherapy, a 34% reduction in the13C-labeled lactate-to-pyruvate ratio resulted in correct identification of the patient as a responder to therapy, which was subsequently confirmed via a complete pathologic response. However, DCE MRI showed an increase in mean Ktrans (132%) and mean kep (31%), which could be incorrectly interpreted as a poor response to treatment. Conclusion: Hyperpolarized13C MRI enabled successful identification of breast cancer response after one cycle of neoadjuvant chemotherapy and may improve response prediction when used in conjunction with multiparametric proton MRI

    Quantifying normal human brain metabolism using hyperpolarized [1– 13 C]pyruvate and magnetic resonance imaging

    Get PDF
    Hyperpolarized 13 C Magnetic Resonance Imaging ( 13 C-MRI) provides a highly sensitive tool to probe tissue metabolism in vivo and has recently been translated into clinical studies. We report the cerebral metabolism of intravenously injected hyperpolarized [1– 13 C]pyruvate in the brain of healthy human volunteers for the first time. Dynamic acquisition of 13 C images demonstrated 13 C-labeling of both lactate and bicarbonate, catalyzed by cytosolic lactate dehydrogenase and mitochondrial pyruvate dehydrogenase respectively. This demonstrates that both enzymes can be probed in vivo in the presence of an intact blood-brain barrier: the measured apparent exchange rate constant (k PL ) for exchange of the hyperpolarized 13 C label between [1– 13 C]pyruvate and the endogenous lactate pool was 0.012 ± 0.006 s −1 and the apparent rate constant (k PB ) for the irreversible flux of [1– 13 C]pyruvate to [ 13 C]bicarbonate was 0.002 ± 0.002 s −1 . Imaging also revealed that [1– 13 C]pyruvate, [1– 13 C]lactate and [ 13 C]bicarbonate were significantly higher in gray matter compared to white matter. Imaging normal brain metabolism with hyperpolarized [1– 13 C]pyruvate and subsequent quantification, have important implications for interpreting pathological cerebral metabolism in future studies

    Hyperpolarized 13C-MRI of Tumor Metabolism Demonstrates Early Metabolic Response to Neoadjuvant Chemotherapy in Breast Cancer

    Get PDF
    Purpose: To compare hyperpolarized carbon-13 (13C)-MRI with dynamic contrast-enhanced MRI (DCE-MRI) for detecting early treatment response in breast cancer. Materials and Methods: In this institutional review board-approved prospective study, one woman with triple-negative breast cancer (age 49) underwent 13C-MRI following injection of hyperpolarized [1-13C]pyruvate and DCE-MRI at 3 T at baseline and after a single cycle of neoadjuvant therapy. The 13C-lactate/13C-pyruvate ratio derived from hyperpolarized 13C-MRI and the pharmacokinetic parameters Ktrans and kep derived from DCE-MRI were compared, before and after treatment. Results: Exchange of the 13C-label between injected hyperpolarized [1-13C]pyruvate and the endogenous lactate pool was demonstrated, catalyzed by the enzyme lactate dehydrogenase. After one cycle of neoadjuvant chemotherapy, a 34% reduction in the 13C-lactate/13C-pyruvate ratio was shown to correctly identify the patient as a responder to therapy, which was subsequently confirmed by a complete pathologic response. However, DCE-MRI showed an increase in the pharmacokinetic parameters Ktrans (132%) and kep (31%), which could be incorrectly interpreted as a poor response to treatment. Conclusion: Hyperpolarized 13C-MRI successfully identified response in breast cancer after a single cycle of neoadjuvant chemotherapy and may improve response prediction when used in conjunction with multiparametric proton MRI.This work was supported by a Wellcome Trust Strategic Award, Cancer Research UK (CRUK; Grants C8742/A18097, C19212/ A16628, C19212/A911376, and C197/A16465), the Austrian Science Fund (Grant J4025-B26), the CRUK Cambridge Centre, the CRUK & Engineering and Physical Sciences Research Council Cancer Imaging Centre in Cambridge and Manchester, the Mark Foundation for Cancer Research and Cancer Research UK Cambridge Centre (Grant C9685/A25177), CRUK National Cancer Imaging Translational Accelerator Award, Addenbrooke’s Charitable Trust, the National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge Experimental Cancer Medicine Centre, and Cambridge University Hospitals National Health Service Foundation Trust

    The Golgin GMAP210/TRIP11 Anchors IFT20 to the Golgi Complex

    Get PDF
    Eukaryotic cells often use proteins localized to the ciliary membrane to monitor the extracellular environment. The mechanism by which proteins are sorted, specifically to this subdomain of the plasma membrane, is almost completely unknown. Previously, we showed that the IFT20 subunit of the intraflagellar transport particle is localized to the Golgi complex, in addition to the cilium and centrosome, and hypothesized that the Golgi pool of IFT20 plays a role in sorting proteins to the ciliary membrane. Here, we show that IFT20 is anchored to the Golgi complex by the golgin protein GMAP210/Trip11. Mice lacking GMAP210 die at birth with a pleiotropic phenotype that includes growth restriction, ventricular septal defects of the heart, omphalocele, and lung hypoplasia. Cells lacking GMAP210 have normal Golgi structure, but IFT20 is no longer localized to this organelle. GMAP210 is not absolutely required for ciliary assembly, but cilia on GMAP210 mutant cells are shorter than normal and have reduced amounts of the membrane protein polycystin-2 localized to them. This work suggests that GMAP210 and IFT20 function together at the Golgi in the sorting or transport of proteins destined for the ciliary membrane

    Efficient Plasma Production in Low Background Neutral Pressures with the M2P2 Prototype

    No full text
    Mini-Magnetospheric Plasma Propulsion (M2P2) seeks the creation of a large-scale (10 km radius) magnetic wall or bubble (i.e. a magnetosphere) by the electromagnetic inflation of a small-scale (20 cm radius) dipole magnet. The inflated magnetosphere will intercept the solar wind and thereby provide high-speed propulsion with modest power and fuel requirements due to the gain provided by the ambient medium. Magnetic field inflation is produced by the injection of plasma onto the dipole magnetic field eliminating the need for large mechanical structures and added material weight at launch. For successful inflation of the magnetic bubble a beta near unity must be achieved along the imposed dipole field. This is dependent on the plasma parameters that can be achieved with a plasma source that provide continuous operation at the desired power levels of 1 to 2 kilowatts. Over the last two years we have been developing a laboratory prototype to demonstrate the inflation of the magnetic field under space-like conditions. In this paper we will present some of the latest results from the prototype development at the University of Washington and show that the prototype can produce high ionization efficiencies while operating in near space like neutral background pressures producing electron temperatures of a few tens of electron volts. This allows for operation with propellant expenditures lower than originally estimated

    Magnetic Dipole Inflation with Cascaded ARC and Applications to Mini-Magnetospheric Plasma Propulsion

    No full text
    Mini-Magnetospheric Plasma Propulsion (M2P2) seeks to create a plasma-inflated magnetic bubble capable of intercepting significant thrust from the solar wind for the purposes of high speed, high efficiency spacecraft propulsion. Previous laboratory experiments into the M2P2 concept have primarily used helicon plasma sources to inflate the dipole magnetic field. The work presented here uses an alternative plasma source, the cascaded arc, in a geometry similar to that used in previous helicon experiments. Time resolved measurements of the equatorial plasma density have been conducted and the results are discussed. The equatorial plasma density transitions from an initially asymmetric configuration early in the shot to a quasisymmetric configuration during plasma production, and then returns to an asymmetric configuration when the source is shut off. The exact reasons for these changes in configuration are unknown, but convection of the loaded flux tube is suspected. The diffusion time was found to be an order of magnitude longer than the Bohm diffusion time for the period of time after the plasma source was shut off. The data collected indicate the plasma has an electron temperature of approximately 11 eV, an order of magnitude hotter than plasmas generated by cascaded arcs operating under different conditions. In addition, indirect evidence suggests that the plasma has a beta of order unity in the source region

    High Power Helicon Thruster

    No full text
    • …
    corecore