666 research outputs found

    Crack Front Waves and the dynamics of a rapidly moving crack

    Full text link
    Crack front waves are localized waves that propagate along the leading edge of a crack. They are generated by the interaction of a crack with a localized material inhomogeneity. We show that front waves are nonlinear entities that transport energy, generate surface structure and lead to localized velocity fluctuations. Their existence locally imparts inertia, which is not incorporated in current theories of fracture, to initially "massless" cracks. This, coupled to crack instabilities, yields both inhomogeneity and scaling behavior within fracture surface structure.Comment: Embedded Latex file including 4 figure

    Pinning/depinning of crack fronts in heterogeneous materials

    Full text link
    The fatigue fracture surfaces of a metallic alloy, and the stress corrosion fracture surfaces of glass are investigated as a function of crack velocity. It is shown that in both cases, there are two fracture regimes, which have a well defined self-affine signature. At high enough length scales, the universal roughness index 0.78 is recovered. At smaller length scales, the roughness exponent is close to 0.50. The crossover length ξc\xi_c separating these two regimes strongly depends on the material, and exhibits a power-law decrease with the measured crack velocity ξcvϕ\xi_c \propto v^{-\phi}, with ϕ1\phi \simeq 1. The exponents ν\nu and β\beta characterising the dependence of ξc\xi_c and vv upon the pulling force are shown to be close to ν2\nu \simeq 2 and β2\beta \simeq 2.Comment: 4 pages, latex, and 4 encapsulated postscript figure

    Post irradiation evaluation of inconel alloy 718 beam window

    Get PDF
    Introduction Annealed Inconel 718 alloy was chosen for the beam window at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) [1]. The window was replaced after 5 years of operation. Mechanical properties and microstructure changes were measured to assess its expected lifetime. Material and Methods A cutting plan was developed based on the IPF rasterred beam profile (FIG. 1). 3-mm OD samples were cut out from the window and thinned to 0.25-mm thick. Shear punch tests were per-formed at 25 °C on 21 samples to quantify shear yield, ultimate shear stress, and ductility. From 1-mm OD, 0.25-mm thick shear punched out disks, 4 TEM specimens of ~30×10×2 μm were obtained using standard FIB lift-out techniques. TEM was performed on an FEI Tecnai TF30-FEG operating at 300 kV. Results and Conclusions TABLE 1 shows MCNPX tally results of accumulated dpa, He and H content from both protons and neutrons fluences and ANSYS steady-state irradiation temperature for the 3-mm OD samples [2]. These peak values are at the peak density of Typically increases in shear yield and shear maximum stress occur with increasing dose. In this case, highest shear yield and ultimate stress was on the lowest dose samples at the outer edge (FIG. 2). Optical microscopy images of the fracture surfaces on the shear punched out disks show no significant change in the fracture mode or reduction in ductility in the un-irradiated, high and low dose irradiated samples. One un-irradiated and 4 irradiated samples (5, E, 16 and 19) were selected for TEM analysis. Figure 3 shows bright field TEM images of an un-irradiated, high and low dose irradiated samples. Un-irradiated sample shows some dislocations and some large precipitates. The high dose sample #5 (~11 dpa, 122 oC) shows small loops and dislocations (left and center images) and no γ\' or γ\'\' precipitates in SAD from z = [011] (right image). Low dose sample #19 (~0.7 dpa, 40 oC) shows a high density of dislocation loops (left image), high density of H/He bubbles (center image) and presence of γ\'\' precipitates in SAD from z = [011] (right image). Radiation induced-hardening is highest at the low dose region in the outer most edge. The hardening from γ\'\' precipitates is determined to be more pronounced than that from trapped bubbles. The lack of significant hardening in the highest dose region is attributed to a lower dis-location density and no γ” precipitates or bubbles [3]. Identification of H or He bubbles and the higher accumulation of these bubbles in the low dose region (no direct beam hitting) warrant further studies. Despite the evidence of irradiation-induced hardening, this spent beam window appears to retain useful ductility after 5 years in service. At the conclusion of 2013 run cycle, the current in-service beam window had reached the same dpa as of the spent window. We plan to extend the service of the current in-service window until it reaches its intended design threshold limit of ~20 dpa (in the highest dose region). Additional measurements at higher dpa values will enable better decision-making in managing risks of the window failure

    Transcending the MAX phases concept of nanolaminated early transition metal carbides/nitrides -- the ZIA phases

    Full text link
    A new potential class of nanolaminated and structurally complex materials, herein conceived as the Zigzag IntermetAllic (ZIA) phases, is proposed. A study of the constituent phases of a specific Nb--Si--Ni intermetallic alloy revealed that its ternary H-phase, \textit{i.e.}, the Nb3_3SiNi2_2 intermetallic compound (IMC), is a crystalline solid with the close-packed \textit{fcc} Bravais lattice, the 312 MAX phase stoichiometry and a layered atomic arrangement that may define an entire class of nanolaminated IMCs analogous to the nanolaminated ceramic compounds known today as the MAX phases. The electron microscopy investigation of the Nb3_{3}SiNi2_{2} compound -- the first candidate ZIA phase -- revealed a remarkable structural complexity, as its ordered unit cell is made of 96 atoms. The ZIA phases extend the concept of nanolaminated crystalline solids well beyond the MAX phases family of early transition metal carbides/nitrides, most likely broadening the spectrum of achievable material properties into domains typically not covered by the MAX phases. Furthermore, this work uncovers that both families of nanolaminated crystalline solids, \textit{i.e.}, the herein introduced \textit{fcc} ZIA phases and all known variants of the \textit{hcp} MAX phases, obey the same overarching stoichiometric rule Px+yAxNyP_{x+y}A_xN_y, where xx and yy are integers ranging from 1 to 6

    Условия формирования и проблемы функционирования крупных диверсифицированных производственно-корпоративных структур в Украине

    Get PDF
    У статті розглянуто умови формування та функціонування, а також історія розвитку великих диверсифікованих виробничо-корпоративних структур в Україні. Пропонуються підходи оцінки результативності процесу диверсифікації з використанням різних методик. Визначено, що в даний час оцінка результативності процесу диверсифікації можлива лише непрямими математичними методами.В статье рассмотрены условия формирования и функционирования, а также история развития крупных диверсифицированных производственно-корпоративных структур в Украине. Предлагаются подходы оценки результативности процесса диверсификации с использованием разных методик. Определено, что в настоящее время оценка результативности процесса диверсификации возможна лишь косвенными математическими методами.In the article address the formation and functioning of the conditions, as well as story development of large industrial and corporate structures, becoming diversification in Ukraine. Proposes approaches assessing impact of the process of diversification, using of different methods. Proved that the current performance assessment process of diversification can only be indirect mathematical methods

    Innate Immune Activation in Intestinal Homeostasis

    Get PDF
    Loss of intestinal immune regulation leading to aberrant immune responses to the commensal microbiota are believed to precipitate the chronic inflammation observed in the gastrointestinal tract of patients with inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Innate immune receptors that recognize conserved components derived from the microbiota are widely expressed by both epithelial cells and leucocytes of the gastrointestinal tract and play a key role in host protection from infectious pathogens; yet precisely how pathogenic and commensal microbes are distinguished is not understood. Furthermore, aberrant innate immune activation may also drive intestinal pathology, as patients with IBD exhibit extensive infiltration of innate immune cells to the inflamed intestine, and polymorphisms in many innate immunity genes influence susceptibility to IBD. Thus, a balanced interaction between the microbiota and innate immune activation is required to maintain a healthy mutualistic relationship between the microbiota and the host, which when disturbed can result in intestinal inflammation

    Genetic Characterization of Conserved Charged Residues in the Bacterial Flagellar Type III Export Protein FlhA

    Get PDF
    For assembly of the bacterial flagellum, most of flagellar proteins are transported to the distal end of the flagellum by the flagellar type III protein export apparatus powered by proton motive force (PMF) across the cytoplasmic membrane. FlhA is an integral membrane protein of the export apparatus and is involved in an early stage of the export process along with three soluble proteins, FliH, FliI, and FliJ, but the energy coupling mechanism remains unknown. Here, we carried out site-directed mutagenesis of eight, highly conserved charged residues in putative juxta- and trans-membrane helices of FlhA. Only Asp-208 was an essential acidic residue. Most of the FlhA substitutions were tolerated, but resulted in loss-of-function in the ΔfliH-fliI mutant background, even with the second-site flhB(P28T) mutation that increases the probability of flagellar protein export in the absence of FliH and FliI. The addition of FliH and FliI allowed the D45A, R85A, R94K and R270A mutant proteins to work even in the presence of the flhB(P28T) mutation. Suppressor analysis of a flhA(K203W) mutation showed an interaction between FlhA and FliR. Taken all together, we suggest that Asp-208 is directly involved in PMF-driven protein export and that the cooperative interactions of FlhA with FlhB, FliH, FliI, and FliR drive the translocation of export substrate

    Spalling uniaxial strength of Al2O3 at high strain rates

    Get PDF
    In this article research into the uniaxial tensile strength of Al2O3 monolithic ceramic is presented. The experimental procedure of the spalling of long bars is investigated from different approaches. This method is used to obtain the tensile strength at high strain rates under uniaxial conditions. Different methodologies proposed by several authors are used to obtain the tensile strength. The hypotheses needed for the experimental set-up are also checked, and the requirements of the set-up and the variables are also studied by means of numerical simulations. The research shows that the shape of the projectile is crucial to achieve successfully tests results. An experimental campaign has been carried out including high speed video and a digital image correlation system to obtain the tensile strength of alumina. Finally, a comparison of the test results provided by three different methods proposed by different authors is presented. The tensile strength obtained from the three such methods on the same specimens provides contrasting results. Mean values vary from one method to another but the trends are similar for two of the methods. The third method gives less scatter, though the mean values obtained are lower and do not follow the same trend as the other methods for the different specimens
    corecore