Abstract

The fatigue fracture surfaces of a metallic alloy, and the stress corrosion fracture surfaces of glass are investigated as a function of crack velocity. It is shown that in both cases, there are two fracture regimes, which have a well defined self-affine signature. At high enough length scales, the universal roughness index 0.78 is recovered. At smaller length scales, the roughness exponent is close to 0.50. The crossover length ξc\xi_c separating these two regimes strongly depends on the material, and exhibits a power-law decrease with the measured crack velocity ξcvϕ\xi_c \propto v^{-\phi}, with ϕ1\phi \simeq 1. The exponents ν\nu and β\beta characterising the dependence of ξc\xi_c and vv upon the pulling force are shown to be close to ν2\nu \simeq 2 and β2\beta \simeq 2.Comment: 4 pages, latex, and 4 encapsulated postscript figure

    Similar works

    Full text

    thumbnail-image

    Available Versions