1,366 research outputs found

    Undertaking rapid evaluations during the COVID-19 pandemic: Lessons from evaluating COVID-19 remote home monitoring services in England

    Get PDF
    Introduction: Rapid evaluations can offer evidence on innovations in health and social care that can be used to inform fast-moving policy and practise, and support their scale-up according to previous research. However, there are few comprehensive accounts of how to plan and conduct large-scale rapid evaluations, ensure scientific rigour, and achieve stakeholder engagement within compressed timeframes. / Methods: Using a case study of a national mixed-methods rapid evaluation of COVID-19 remote home monitoring services in England, conducted during the COVID-19 pandemic, this manuscript examines the process of conducting a large-scale rapid evaluation from design to dissemination and impact, and reflects on the key lessons for conducting future large-scale rapid evaluations. In this manuscript, we describe each stage of the rapid evaluation: convening the team (study team and external collaborators), design and planning (scoping, designing protocols, study set up), data collection and analysis, and dissemination. / Results: We reflect on why certain decisions were made and highlight facilitators and challenges. The manuscript concludes with 12 key lessons for conducting large-scale mixed-methods rapid evaluations of healthcare services. We propose that rapid study teams need to: (1) find ways of quickly building trust with external stakeholders, including evidence-users; (2) consider the needs of the rapid evaluation and resources needed; (3) use scoping to ensure the study is highly focused; (4) carefully consider what cannot be completed within a designated timeframe; (5) use structured processes to ensure consistency and rigour; (6) be flexible and responsive to changing needs and circumstances; (7) consider the risks associated with new data collection approaches of quantitative data (and their usability); (8) consider whether it is possible to use aggregated quantitative data, and what that would mean when presenting results, (9) consider using structured processes & layered analysis approaches to rapidly synthesise qualitative findings, (10) consider the balance between speed and the size and skills of the team, (11) ensure all team members know roles and responsibilities and can communicate quickly and clearly; and (12) consider how best to share findings, in discussion with evidence-users, for rapid understanding and use. / Conclusion: These 12 lessons can be used to inform the development and conduct of future rapid evaluations in a range of contexts and settings

    A Study of Cosmic Ray Composition in the Knee Region using Multiple Muon Events in the Soudan 2 Detector

    Full text link
    Deep underground muon events recorded by the Soudan 2 detector, located at a depth of 2100 meters of water equivalent, have been used to infer the nuclear composition of cosmic rays in the "knee" region of the cosmic ray energy spectrum. The observed muon multiplicity distribution favors a composition model with a substantial proton content in the energy region 800,000 - 13,000,000 GeV/nucleus.Comment: 38 pages including 11 figures, Latex, submitted to Physical Review

    Measurement of the neutrino mass splitting and flavor mixing by MINOS

    Get PDF
    Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25imes10207.25 imes 10^{20} protons on target. A fit to neutrino oscillations yields values of Deltam2=(2.320.08+0.12)imes103|Delta m^2| = (2.32^{+0.12}_{-0.08}) imes10^{-3},eV2^2 for the atmospheric mass splitting and m sin^2!(2 heta) > 0.90 (90%,C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively

    Measurement of the Atmospheric Muon Charge Ratio at TeV Energies with MINOS

    Get PDF
    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 meters-water-equivalent in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be 1.374 +/- 0.004 (stat.) +0.012 -0.010(sys.). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the two standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3 -- 1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.Comment: 16 pages, 17 figure

    Neutrino and Antineutrino Inclusive Charged-current Cross Section Measurements with the MINOS Near Detector

    Get PDF
    The energy dependence of the neutrino-iron and antineutrino-iron inclusive charged-current cross sections and their ratio have been measured using a high-statistics sample with the MINOS Near Detector exposed to the NuMI beam from the Main Injector at Fermilab. Neutrino and antineutrino fluxes were determined using a low hadronic energy subsample of charged-current events. We report measurements of neutrino-Fe (antineutrinoFe) cross section in the energy range 3-50 GeV (5-50 GeV) with precision of 2-8% (3-9%) and their ratio which is measured with precision 2-8%. The data set spans the region from low energy, where accurate measurements are sparse, up to the high-energy scaling region where the cross section is well understood.Comment: accepted by PR

    Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector

    Get PDF
    A search for a sidereal modulation in the MINOS near detector neutrino data was performed. If present, this signature could be a consequence of Lorentz and CPT violation as predicted by a class of extensions to the Standard Model. No evidence for a sidereal signal in the data set was found, implying that there is no significant change in neutrino propagation that depends on the direction of the neutrino beam in a sun-centered inertial frame. Upper limits on the magnitudes of the Lorentz and CPT violating terms in these extensions to the Standard Model lie between 0.01-1% of the maximum expected, assuming a suppression of these signatures by factor of 101710^{-17}.

    Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam

    Get PDF
    The velocity of a ~3 GeV neutrino beam is measured by comparing detection times at the near and far detectors of the MINOS experiment, separated by 734 km. A total of 473 far detector neutrino events was used to measure (v-c)/c=5.12.910-5 (at 68% C.L.). By correlating the measured energies of 258 charged-current neutrino events to their arrival times at the far detector, a limit is imposed on the neutrino mass of mnu<50 MeV/c2 (99% C.L.)
    corecore