688 research outputs found
Road induced edge effects on a forest bird community in tropical Asia
Background: Edge effects cause changes in bird community richness, abundance, and/or distribution within a landscape, but the avian guilds most influenced can vary among regions. Although Southeast Asia has the highest rates of deforestation and projected species loss, and is currently undergoing an explosive growth in road infrastructure, there have been few studies of the effects of forest edges on avian communities in this region.
Methods: We examined avian community structure in a dry evergreen forest in northeastern Thailand adjacent to a five-lane highway. We evaluated the richness and abundance of birds in 11 guilds at 24 survey points on three parallel transects perpendicular to the edge. At each point, 10-min surveys were conducted during February‒August 2014 and March‒August 2015. Vegetation measurements were conducted at 16 of the bird survey points and ambient noise was measured at all 24 survey points.
Results: We found a strongly negative response to the forest edge for bark-gleaning, sallying, terrestrial, and understory insectivores and a weakly negative response for arboreal frugivore-insectivores, foliage gleaning insectivores, and raptors. Densities of trees and the percentage canopy cover were higher in the interior, and the ambient noise was lower. In contrast, arboreal nectarivore-insectivores responded positively to the forest edge, where there was a higher vegetation cover in the ground layer, a lower tree density, and a higher level of ambient noise.
Conclusion: Planners should avoid road development in forests of high conservation value to reduce impacts on biodiversity. Where avoidance is impossible, a number of potential mitigation methods are available, but more detailed assessments of these are needed before they are applied in this region
Biodiversity Gains? The Debate on Changes in Local- vs Global-Scale Species Richness
Editorial: Do changes in biodiversity at local scales reflect the declines seen at global scales? This debate dates back at least 15 years..
The long term effects of sports concussion on retired Australian football players: a study using Transranial Magnetic Stimulation
This study investigated corticomotor excitability and inhibition, cognitive functioning, and fine motor dexterity in retired elite and amateur Australian football (AF) players who had sustained concussions during their playing careers. Forty male AF players who played at the elite level (n=20; mean age 49.7±5.7 years) or amateur level (n=20; mean age 48.4±6.9 years), and had sustained on average 3.2 concussions 21.9 years previously, were compared with 20 healthy age-matched male controls (mean age 47.56±6.85 years). All participants completed assessments of fine dexterity, visuomotor reaction time, spatial working memory (SWM), and associative learning (AL). Transcranial magnetic stimulation (TMS) was used to measure corticospinal excitability: stimulus-response (SR) curves and motor evoked potential (MEP) 125% of active motor threshold (aMT); and intracortical inhibition: cortical silent period (cSP), short-interval intracortical inhibition (SICI), and long-interval intracortical inhibition (LICI). Healthy participants performed better in dexterity (p=0.003), reaction (p=0.003), and movement time (p=0.037) than did both AF groups. Differences between AF groups were found in AL (p=0.027) and SWM (p=0.024). TMS measures revealed that both AF groups showed reduced cSP duration at 125% aMT (p>0.001) and differences in SR curves (p>0.001) than did healthy controls. Similarly, SICI (p=0.012) and LICI (p=0.009) were reduced in both AF groups compared with controls. Regression analyses revealed a significant contribution to differences in motor outcomes with the three measures of intracortical inhibition. The measures of inhibition differed, however, in terms of which performance measure they had a significant and unique predictive relationship with, reflecting the variety of participant concussion injuries. This study is the first to demonstrate differences in motor control and intracortical inhibition in AF players who had sustained concussions during their playing career two decades previously
Conserving the World’s Megafauna and Biodiversity: The Fierce Urgency of Now
First paragraph: In our recent perspective article, we noted that most (approximately 60 percent) terrestrial large carnivore and large herbivore species are now threatened with extinction, and we offered a 13-point declaration designed to promote and guide actions to save these iconic mammalian megafauna (Ripple et al. 2016). Some may worry that a focus on saving megafauna might undermine efforts to conserve biodiversity more broadly. We believe that all dimensions of biodiversity are important and that efforts to conserve megafauna are not in themselves sufficient to halt the dispiriting trends of species and population losses in recent decades. From 1970 to 2012, a recent global analysis showed a 58 percent overall decline in vertebrate population abundance (WWF 2016). Bold and varied approaches are necessary to conserve what remains of Earth’s biodiversity, and our declaration in no way disputes the value of specific conservation initiatives targeting other taxa. Indeed, the evidence is clear that without massively scaling up conservation efforts for all species, we will fail to achieve internationally agreed-upon targets for biodiversity (Tittensor et al. 2014).Additional co-authors: Holly T Dublin, James A Estes, Kristoffer T Everatt, Mauro Galetti, Varun R Goswami, Matt W Hayward, Simon Hedges, Michael Hoffmann, Luke TB Hunter, Graham IH Kerley, Mike Letnic, Taal Levi, John C Morrison, Michael Paul Nelson, Thomas M Newsome, Luke Painter, Robert M Pringle, Christopher J Sandom, John Terborgh, Adrian Treves, Blaire Van Valkenburgh, John A Vucetich, Aaron J Wirsing, Arian D Wallach, Christopher Wolf, Rosie Woodroffe, Hillary Young, And Li Zhan
Classement des carcasses pour la durabilité de la filière viande bovine et ovine. Partie II
info:eu-repo/semantics/publishedVersio
Abnormal reward prediction-error signalling in antipsychotic naive individuals with first-episode psychosis or clinical risk for psychosis.
Ongoing research suggests preliminary, though not entirely consistent, evidence of neural abnormalities in signalling prediction errors in schizophrenia. Supporting theories suggest mechanistic links between the disruption of these processes and the generation of psychotic symptoms. However, it is unknown at what stage in the pathogenesis of psychosis these impairments in prediction-error signalling develop. One major confound in prior studies is the use of medicated patients with strongly varying disease durations. Our study aims to investigate the involvement of the meso-cortico-striatal circuitry during reward prediction-error signalling in earliest stages of psychosis. We studied patients with first-episode psychosis (FEP) and help-seeking individuals at-risk for psychosis due to sub-threshold prodromal psychotic symptoms. Patients with either FEP (n = 14), or at-risk for developing psychosis (n = 30), and healthy volunteers (n = 39) performed a reinforcement learning task during fMRI scanning. ANOVA revealed significant (p < 0.05 family-wise error corrected) prediction-error signalling differences between groups in the dopaminergic midbrain and right middle frontal gyrus (dorsolateral prefrontal cortex, DLPFC). FEP patients showed disrupted reward prediction-error signalling compared to controls in both regions. At-risk patients showed intermediate activation in the midbrain that significantly differed from controls and from FEP patients, but DLPFC activation that did not differ from controls. Our study confirms that FEP patients have abnormal meso-cortical signalling of reward-prediction errors, whereas reward-prediction-error dysfunction in the at-risk patients appears to show a more nuanced pattern of activation with a degree of midbrain impairment but preserved cortical function
Recommended from our members
Status of the LBNL normal-conducting CW VHF electron photo-gun
The fabrication and installation at the Lawrence Berkeley National Laboratory of a high-brightness high-repetition rate photo-gun, based on a normal conducting 187 MHz (VHF) RF cavity operating in CW mode, is in an advanced phase. The cavity will generate an electric field at the cathode plane of ∼ 20 MV/m to accelerate the electron bunches up to ∼ 750 keV, with peak current, energy spread and transverse emittance suitable for FEL and ERL applications. The gun vacuum system has been designed for achieving pressures compatible with the use of "delicate" high quantum efficiency semiconductor cathodes to generate up to a nC bunches at MHz repetition rate with present laser technology. Several photo-cathode/laser systems are under consideration, and in particular photo-cathodes based on K CsSb are being developed for the gun and have already achieved a QE of 8% at 532 nm wavelength, or close to 20% including the Schottky barrier lowering. The cathode will be operated by a μJ fiber laser in conjunction with refractive transverse beam shaping to create a flat top transverse profile, as well as a birefringent pulse stacker to create a flat top temporal profile. The present status and the plan for future activities are presented.
Recommended from our members
When passive feels active - delusion-proneness alters self-recognition in the moving rubber hand illusion
Psychotic patients have problems with bodily self-recognition such as the experience of self-produced actions (sense of agency) and the perception of the body as their own (sense of ownership). While it has been shown that such impairments in psychotic patients can be explained by hypersalient processing of external sensory input it has also been suggested that they lack normal efference copy in voluntary action. However, it is not known how problems with motor predictions like efference copy contribute to impaired sense of agency and ownership in psychosis or psychosis-related states. We used a rubber hand illusion based on finger movements and measured sense of agency and ownership to compute a bodily self-recognition score in delusion-proneness (indexed by Peters’ Delusion Inventory - PDI). A group of healthy subjects (n=71) experienced active movements (involving motor predictions) or passive movements (lacking motor predictions). We observed a highly significant correlation between delusion-proneness and self-recognition in the passive conditions, while no such effect was observed in the active conditions. This was seen for both ownership and agency scores. The result suggests that delusion-proneness is associated with hypersalient external input in passive conditions, resulting in an abnormal experience of the illusion. We hypothesize that this effect is not present in the active condition because deficient motor predictions counteract hypersalience in psychosis proneness
- …