126 research outputs found

    Spatial layout planning in sub-surface rail station design for effective fire evacuation

    Get PDF
    The London Underground network is a crucial part of the transportation system in one of only four ‘Alpha’ world cities. The other three – Paris, New York and Tokyo – also have such sub-surface railway transport systems that may benefit from this shape grammar station design process in a future research proposal. In London’s case, the passenger flow rates are the underlining factor in sizing infrastructure where passengers have access – it is therefore this criterion that provides the basis for the shape grammar formulation for the largest, oldest and one of the most complex underground systems in the world. The research aims to improve passenger fire evacuation times, with due cognisance of the growth of numbers using the system, and its present susceptibility to terrorist attacks taken into account. The proposed shape grammar approach will provide for generation of spatial layouts, based upon visual rules of shape recognition, replacement / union, their connectivity and spatial relationships. The paper concentrates on definition and implementation of novel shape grammar design rules that incorporate station planning design knowledge, and in particular also discusses designers’ fire risk assessment approach and related knowledge that is also needed to produce credible station design solutions. Development, to date, of the proposed artificially intelligent CAD environment is also described along with parallel theoretical research. The proposed CAD interface provides familiarity to the designer and avoids incompatibility issues regarding drawing exchange format between various software systems. The shape grammar layouts produced will be tested in SIMULEX, a commercially available evacuation package, and be compared against ‘traditionally’ designed layouts to demonstrate improvements of preliminary ‘reference’ designs, which follow the standard London Underground design process as a later stage of this research

    Principles for the definition of design structures

    Get PDF
    Different kinds of design structure are created and used in engineering design and development processes. Function structures, design grammars and bills of materials are common examples. However, there is a lack of clarity regarding distinctions and similarities between different kinds of structure and systematic ways to articulate them. This paper brings together research on product structuring and shape computation to inform the specification of principles for the definition of design structures. The principles draw together findings reported in the computational geometry and product definition literature with research from a range of companies and industry sectors that encompasses enterprise and process structures. The potential value of the principles to computer integrated manufacturing and through-life support is demonstrated through application to four case studies

    Modelling the underlying principles of human aesthetic preference in evolutionary art

    Get PDF
    Our understanding of creativity is limited, yet there is substantial research trying to mimic human creativity in artificial systems and in particular to produce systems that automatically evolve art appreciated by humans. We propose here to study human visual preference through observation of nearly 500 user sessions with a simple evolutionary art system. The progress of a set of aesthetic measures throughout each interactive user session is monitored and subsequently mimicked by automatic evolution in an attempt to produce an image to the liking of the human user

    Evolutionary development of tensegrity structures

    Get PDF
    Contributions from the emerging fields of molecular genetics and evo-devo (evolutionary developmental biology) are greatly benefiting the field of evolutionary computation, initiating a promise of renewal in the traditional methodology. While direct encoding has constituted a dominant paradigm, indirect ways to encode the solutions have been reported, yet little attention has been paid to the benefits of the proposed methods to real problems. In this work, we study the biological properties that emerge by means of using indirect encodings in the context of form-finding problems. A novel indirect encoding model for artificial development has been defined and applied to an engineering structural-design problem, specifically to the discovery of tensegrity structures. This model has been compared with a direct encoding scheme. While the direct encoding performs similarly well to the proposed method, indirect-based results typically outperform the direct-based results in aspects not directly linked to the nature of the problem itself, but to the emergence of properties found in biological organisms, like organicity, generalization capacity, or modularity aspects which are highly valuable in engineering
    • …
    corecore