74 research outputs found

    Precision predictions for supersymmetric dark matter

    Full text link
    The dark matter relic density has been measured by Planck and its predecessors with an accuracy of about 2%. We present theoretical calculations with the numerical program DM@NLO in next-to-leading order SUSY QCD and beyond, which allow to reach this precision for gaugino and squark (co-)annihilations, and use them to scan the phenomenological MSSM for viable regions, applying also low-energy, electroweak and hadron collider constraints.Comment: 6 pages, 1 table, 8 figures, proceedings of ICHEP 201

    Demonstration of a three-dimensional dynamically adaptive atmospheric dynamic framework for the simulation of mountain waves

    Get PDF
    In this paper, Fluidity-Atmosphere, representative of a three-dimensional (3D) non-hydrostatic Galerkin compressible atmospheric dynamic framework, is generated to resolve large-scale and small-scale phenomena simultaneously. This achievement is facilitated by the use of non-hydrostatic equations and the adoption of a flexible 3D dynamically adaptive mesh where the mesh is denser in areas with higher gradients of variable solutions and relatively sparser in the rest of the domain while maintaining promising accuracy and reducing computational resource requirements. The dynamic core is formulated based on anisotropic tetrahedral meshes in both the horizontal and vertical directions. The performance of the adaptive mesh techniques in Fluidity-Atmosphere is evaluated by simulating the formation and propagation of a non-hydrostatic mountain wave. The 2D anisotropic adaptive mesh shows that the numerical solution is in good agreement with the analytic solution. The variation in the horizontal and vertical resolutions has a strong impact on the smoothness of the results and maintains convergence even at high resolutions. When the simulation is extended to 3D, Fluidity-Atmosphere shows stable and symmetric results in the benchmark test cases. The flows over a bell-shaped mountain are resolved quite smoothly. For steep mountains, Fluidity-Atmosphere performs very well, which shows the potential of using 3D adaptive meshes in atmospheric modeling. Finally, as an alternative cut-cell mesh in Fluidity-Atmosphere, the anisotropic adaptive mesh coupled with the Galerkin method provides an alternative accurate representation of terrain-induced flow

    Variational analysis of drifter positions and model outputs for the reconstruction of surface currents in the central Adriatic during fall 2002

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C04004, doi:10.1029/2007JC004148.In this paper we present an application of a variational method for the reconstruction of the velocity field in a coastal flow in the central Adriatic Sea, using in situ data from surface drifters and outputs from the ROMS circulation model. The variational approach, previously developed and tested for mesoscale open ocean flows, has been improved and adapted to account for inhomogeneities on boundary current dynamics over complex bathymetry and coastline and for weak Lagrangian persistence in coastal flows. The velocity reconstruction is performed using nine drifter trajectories over 45 d, and a hierarchy of indirect tests is introduced to evaluate the results as the real ocean state is not known. For internal consistency and impact of the analysis, three diagnostics characterizing the particle prediction and transport, in terms of residence times in various zones and export rates from the boundary current toward the interior, show that the reconstruction is quite effective. A qualitative comparison with sea color data from the MODIS satellite images shows that the reconstruction significantly improves the description of the boundary current with respect to the ROMS model first guess, capturing its main features and its exchanges with the interior when sampled by the drifters.Four of the authors are supported by the Office of Naval Research, V.T. and A.G. under grants N00014-05-1-0094 and N00014-05-1-0095, P.M.P. under grant N00014-03-1-0291, and S.C. under grant N00014-05-1-0730. CNR-ISMAR activity was partially supported by P.O.R. ‘‘CAINO’’ (Regione Puglia), VECTOR (Italian MIUR) project, and ECOOP (EU project)
    • 

    corecore