1,330 research outputs found

    Sensations, Feelings, and Expressions

    Get PDF
    Paper by Richard J. Sclafan

    Overview and Summary of the Third AIAA High Lift Prediction Workshop

    Get PDF
    The third AIAA CFD High-Lift Prediction Workshop was held in Denver, Colorado, in June 2017. The goals of the workshop continued in the tradition of the first and second high-lift workshops: to assess the numerical prediction capability of current-generation computational fluid dynamics (CFD) technology for swept, medium/high-aspect-ratio wings in landing/takeoff (high-lift) configurations. This workshop analyzed the flow over two different configurations, a clean high-lift version of the NASA Common Research Model, and the JAXA Standard Model. The former was a CFD-only study, as experimental data were not available prior to the workshop. The latter was a nacelle/pylon installation study that included comparison with experimental wind tunnel data. The workshop also included a 2-D turbulence model verification exercise. Thirty-five participants submitted a total of 79 data sets of CFD results. A variety of grid systems (both structured and unstructured) as well as different flow simulation methodologies (including Reynolds-averaged Navier-Stokes and Lattice-Boltzmann) were used. This paper analyzes the combined results from all workshop participants. A statistical summary of the CFD results is also included

    High-Lift OVERFLOW Analysis of the DLR-F11 Wind Tunnel Model

    Get PDF
    In response to the 2nd AIAA CFD High Lift Prediction Workshop, the DLR-F11 wind tunnel model is analyzed using the Reynolds-averaged Navier-Stokes flow solver OVERFLOW. A series of overset grids for a bracket-off landing configuration is constructed and analyzed as part of a general grid refinement study. This high Reynolds number (15.1 million) analysis is done at multiple angles-of-attack to evaluate grid resolution effects at operational lift levels as well as near stall. A quadratic constitutive relation recently added to OVERFLOW for improved solution accuracy is utilized for side-of-body separation issues at low angles-of-attack and outboard wing separation at stall angles. The outboard wing separation occurs when the slat brackets are added to the landing configuration and is a source of discrepancy between the predictions and experimental data. A detailed flow field analysis is performed at low Reynolds number (1.35 million) after pressure tube bundles are added to the bracket-on medium grid system with the intent of better understanding bracket/bundle wake interaction with the wing's boundary layer. Localized grid refinement behind each slat bracket and pressure tube bundle coupled with a time accurate analysis are exercised in an attempt to improve stall prediction capability. The results are inconclusive and suggest the simulation is missing a key element such as boundary layer transition. The computed lift curve is under-predicted through the linear range and over-predicted near stall, and the solution from the most complete configuration analyzed shows outboard wing separation occurring behind slat bracket 6 where the experiment shows it behind bracket 5. These results are consistent with most other participants of this workshop

    Enacting Race and Class Online: Gatekeeping and Meaning Making on Reddit’s r/Brooklyn

    Full text link
    In the following thesis I examine how race- and class-based power structures are conceptualized and actualized in the virtual sphere. The Internet as an “imagined community” upholds the historically embedded power structures that perpetuate deeply-rooted American hegemonic ideals as they relate to race and class. To demonstrate the conceptualization of power structures in virtual space an analysis of discourse on the social media and news aggregate website, Reddit, that positions online conversations about race and class as an extension of the racial inequality present in social structures offline. Isolating gentrification, and topics related to gentrification such as new business openings and apartment hunting advice, this thesis observes how Redditors participate in the perpetuation of harmful, archaic power structures through discussions that establish a culture of neoliberalism and minimize the voices of people of color. Finally, I argue that the replication of race- and class-based power structures online suggests an ongoing process of gentrification in virtual space

    From sensorimotor dependencies to perceptual practices: making enactivism social

    Get PDF
    Proponents of enactivism should be interested in exploring what notion of action best captures the type of action-perception link that the view proposes, such that it covers all the aspects in which our doings constitute and are constituted by our perceiving. This article proposes and defends the thesis that the notion of sensorimotor dependencies is insufficient to account for the reality of human perception, and that the central enactive notion should be that of perceptual practices. Sensorimotor enactivism is insufficient because it has no traction on socially dependent perceptions, which are essential to the role and significance of perception in our lives. Since the social dimension is a central desideratum in a theory of human perception, enactivism needs a notion that accounts for such an aspect. This article sketches the main features of the Wittgenstein-inspired notion of perceptual practices as the central notion to understand perception. Perception, I claim, is properly understood as woven into a type of social practices that includes food, dance, dress, music, etc. More specifically, perceptual practices are the enactment of culturally structured, normatively rich techniques of commerce of meaningful multi- and inter-modal perceptible material. I argue that perceptual practices explain three central features of socially dependent perception: attentional focus, aspects’ saliency, and modal-specific harmony-like relations

    OVERFLOW Contribution to HiLiftPW-3

    Get PDF
    We plan to perform the following sets of computations: For all our contributions (except where stated) Code: OVERFLOW, Turbulence model: SAnegRCQCR2000. - 1. Results will be submitted for both the full chord flap gap (Case 1a) and partially-sealed Chord Flap gap (Case 1c): 1. Grid Refinement Study; 2. Grids: structured overset grids supplied by HiLiftPW committee; 3. Connectivity: Domain Connectivity Framework, DCF. - 2. Results will be submitted for JAXA Standard Model and Nacelle/Pylon Off (Case 2a), Nacelle/Pylon On (Case 2c): 1. Alpha Study; 2. Grids: structured overset grids supplied by HiLiftPW committee; 3. Connectivity: Pegasus 5 (Peg5). - 3. A study of the effects of different connectivity paradigms: 1. DCF vs Peg5 for HLCRM cases; 2. DCF vs. C3P (NASA Ames) vs. Peg5 for JSM cases; 3. JSM grids will be the focus where we will hopefully see some type of trends with reference to wind tunnel data. - 4. Adaption cases will be attempted for (and submitted where appropriate): 1. Cases 1c,1d: HLCRM; 2. Cases 2c and 2d: JSM; 3. Grid: Near Body grids provided by committee, OffBody grids Cartesian; 4. AMR NearBody and OffBody Adaption. - 5. Case 3 Turbulence model verification study: 1. Grid: Series of 3 finest grids as defined on http://turbmodels.larc.nasa.gov/airfoilwakeverif.html; 2. Turbulence models: SAneg and SAneg RCQCR2000. OVERFLOW 2.2 is a Reynolds-averaged Navier-Stokes (RANS) code developed by NASA..

    Drag Prediction for the NASA CRM Wing-Body-Tail Using CFL3D and OVERFLOW on an Overset Mesh

    Get PDF
    In response to the fourth AIAA CFD Drag Prediction Workshop (DPW-IV), the NASA Common Research Model (CRM) wing-body and wing-body-tail configurations are analyzed using the Reynolds-averaged Navier-Stokes (RANS) flow solvers CFL3D and OVERFLOW. Two families of structured, overset grids are built for DPW-IV. Grid Family 1 (GF1) consists of a coarse (7.2 million), medium (16.9 million), fine (56.5 million), and extra-fine (189.4 million) mesh. Grid Family 2 (GF2) is an extension of the first and includes a superfine (714.2 million) and an ultra-fine (2.4 billion) mesh. The medium grid anchors both families with an established build process for accurate cruise drag prediction studies. This base mesh is coarsened and enhanced to form a set of parametrically equivalent grids that increase in size by a factor of roughly 3.4 from one level to the next denser level. Both CFL3D and OVERFLOW are run on GF1 using a consistent numerical approach. Additional OVERFLOW runs are made to study effects of differencing scheme and turbulence model on GF1 and to obtain results for GF2. All CFD results are post-processed using Richardson extrapolation, and approximate grid-converged values of drag are compared. The medium grid is also used to compute a trimmed drag polar for both codes

    Contributions to the Sixth Drag Prediction Workshop Using Structured, Overset Grid Methods

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143028/1/1.C034486.pd

    Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets

    Get PDF
    Citation: Pullen, M. G., Wolter, B., Le, A. T., Baudisch, M., Sclafani, M., Pires, H., . . . Biegert, J. (2016). Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets. Nature Communications, 7, 6. doi:10.1038/ncomms11922The ability to directly follow and time-resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser-induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as pi(g)) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval of the structure of randomly oriented O-2 and C2H2 molecules, with pi(g) and pi(u) symmetries, respectively, and where their ionization probabilities do not maximize along their molecular axes. While this removes a serious bottleneck for laser-induced diffraction imaging, we find unexpectedly strong backscattering contributions from low-Z atoms
    corecore