128 research outputs found

    Abortion Safety and Use with Normally Prescribed Mifepristone in Canada.

    Full text link
    BACKGROUND: In the United States, mifepristone is available for medical abortion (for use with misoprostol) only with Risk Evaluation and Mitigation Strategy (REMS) restrictions, despite an absence of evidence to support such restrictions. Mifepristone has been available in Canada with a normal prescription since November 2017. METHODS: Using population-based administrative data from Ontario, Canada, we examined abortion use, safety, and effectiveness using an interrupted time-series analysis comparing trends in incidence before mifepristone was available (January 2012 through December 2016) with trends after its availability without restrictions (November 7, 2017, through March 15, 2020). RESULTS: A total of 195,183 abortions were performed before mifepristone was available and 84,032 after its availability without restrictions. After the availability of mifepristone with a normal prescription, the abortion rate continued to decline, although more slowly than was expected on the basis of trends before mifepristone had been available (adjusted risk difference in time-series analysis, 1.2 per 1000 female residents between 15 and 49 years of age; 95% confidence interval [CI], 1.1 to 1.4), whereas the percentage of abortions provided as medical procedures increased from 2.2% to 31.4% (adjusted risk difference, 28.8 percentage points; 95% CI, 28.0 to 29.7). There were no material changes between the period before mifepristone was available and the nonrestricted period in the incidence of severe adverse events (0.03% vs. 0.04%; adjusted risk difference, 0.01 percentage points; 95% CI, -0.06 to 0.03), complications (0.74% vs. 0.69%; adjusted risk difference, 0.06 percentage points; 95% CI, -0.07 to 0.18), or ectopic pregnancy detected after abortion (0.15% vs. 0.22%; adjusted risk difference, -0.03 percentage points; 95% CI, -0.19 to 0.09). There was a small increase in ongoing intrauterine pregnancy continuing to delivery (adjusted risk difference, 0.08 percentage points; 95% CI, 0.04 to 0.10). CONCLUSIONS: After mifepristone became available as a normal prescription, the abortion rate remained relatively stable, the proportion of abortions provided by medication increased rapidly, and adverse events and complications remained stable, as compared with the period when mifepristone was unavailable. (Funded by the Canadian Institutes of Health Research and the Women's Health Research Institute.)

    Predicted contextual modulation varies with distance from pinwheel centers in the orientation preference map

    Get PDF
    In the primary visual cortex (V1) of some mammals, columns of neurons with the full range of orientation preferences converge at the center of a pinwheel-like arrangement, the ‘pinwheel center' (PWC). Because a neuron receives abundant inputs from nearby neurons, the neuron's position on the cortical map likely has a significant impact on its responses to the layout of orientations inside and outside its classical receptive field (CRF). To understand the positional specificity of responses, we constructed a computational model based on orientation preference maps in monkey V1 and hypothetical neuronal connections. The model simulations showed that neurons near PWCs displayed weaker but detectable orientation selectivity within their CRFs, and strongly reduced contextual modulation from extra-CRF stimuli, than neurons distant from PWCs. We suggest that neurons near PWCs robustly extract local orientation within their CRF embedded in visual scenes, and that contextual information is processed in regions distant from PWCs

    Invariant computations in local cortical networks with balanced excitation and inhibition

    Get PDF
    [Abstract] Cortical computations critically involve local neuronal circuits. The computations are often invariant across a cortical area yet are carried out by networks that can vary widely within an area according to its functional architecture. Here we demonstrate a mechanism by which orientation selectivity is computed invariantly in cat primary visual cortex across an orientation preference map that provides a wide diversity of local circuits. Visually evoked excitatory and inhibitory synaptic conductances are balanced exquisitely in cortical neurons and thus keep the spike response sharply tuned at all map locations. This functional balance derives from spatially isotropic local connectivity of both excitatory and inhibitory cells. Modeling results demonstrate that such covariation is a signature of recurrent rather than purely feed-forward processing and that the observed isotropic local circuit is sufficient to generate invariant spike tuning

    Two-way communication with neural networks in vivo using focused light

    Get PDF
    Neuronal networks process information in a distributed, spatially heterogeneous manner that transcends the layout of electrodes. In contrast, directed and steerable light offers the potential to engage specific cells on demand. We present a unified framework for adapting microscopes to use light for simultaneous in vivo stimulation and recording of cells at fine spatiotemporal resolutions. We use straightforward optics to lock onto networks in vivo, to steer light to activate circuit elements and to simultaneously record from other cells. We then actualize this 'free' augmentation on both an 'open' two-photon microscope and a leading commercial one. By following this protocol, setup of the system takes a few days, and the result is a noninvasive interface to brain dynamics based on directed light, at a network resolution that was not previously possible and which will further improve with the rapid advance in development of optical reporters and effectors. This protocol is for physiologists who are competent with computers and wish to extend hardware and software to interface more fluidly with neuronal networks.National Institutes of Health (U.S.) (Postdoctoral Fellowship)Simons Foundation (Postdoctoral Fellowship)National Institutes of Health (U.S.) (Predoctoral Fellowship)National Institutes of Health (U.S.)Simons Foundatio

    Denoising Two-Photon Calcium Imaging Data

    Get PDF
    Two-photon calcium imaging is now an important tool for in vivo imaging of biological systems. By enabling neuronal population imaging with subcellular resolution, this modality offers an approach for gaining a fundamental understanding of brain anatomy and physiology. Proper analysis of calcium imaging data requires denoising, that is separating the signal from complex physiological noise. To analyze two-photon brain imaging data, we present a signal plus colored noise model in which the signal is represented as harmonic regression and the correlated noise is represented as an order autoregressive process. We provide an efficient cyclic descent algorithm to compute approximate maximum likelihood parameter estimates by combing a weighted least-squares procedure with the Burg algorithm. We use Akaike information criterion to guide selection of the harmonic regression and the autoregressive model orders. Our flexible yet parsimonious modeling approach reliably separates stimulus-evoked fluorescence response from background activity and noise, assesses goodness of fit, and estimates confidence intervals and signal-to-noise ratio. This refined separation leads to appreciably enhanced image contrast for individual cells including clear delineation of subcellular details and network activity. The application of our approach to in vivo imaging data recorded in the ferret primary visual cortex demonstrates that our method yields substantially denoised signal estimates. We also provide a general Volterra series framework for deriving this and other signal plus correlated noise models for imaging. This approach to analyzing two-photon calcium imaging data may be readily adapted to other computational biology problems which apply correlated noise models.National Institutes of Health (U.S.) (DP1 OD003646-01)National Institutes of Health (U.S.) (R01EB006385-01)National Institutes of Health (U.S.) (EY07023)National Institutes of Health (U.S.) (EY017098

    Neural network model of the primary visual cortex: From functional architecture to lateral connectivity and back

    Get PDF
    The role of intrinsic cortical dynamics is a debatable issue. A recent optical imaging study (Kenet et al., 2003) found that activity patterns similar to orientation maps (OMs), emerge in the primary visual cortex (V1) even in the absence of sensory input, suggesting an intrinsic mechanism of OM activation. To better understand these results and shed light on the intrinsic V1 processing, we suggest a neural network model in which OMs are encoded by the intrinsic lateral connections. The proposed connectivity pattern depends on the preferred orientation and, unlike previous models, on the degree of orientation selectivity of the interconnected neurons. We prove that the network has a ring attractor composed of an approximated version of the OMs. Consequently, OMs emerge spontaneously when the network is presented with an unstructured noisy input. Simulations show that the model can be applied to experimental data and generate realistic OMs. We study a variation of the model with spatially restricted connections, and show that it gives rise to states composed of several OMs. We hypothesize that these states can represent local properties of the visual scene

    NT2 Derived Neuronal and Astrocytic Network Signalling

    Get PDF
    A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns) expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As) exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality
    corecore