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Abstract

Two-photon calcium imaging is now an important tool for in vivo imaging of biological systems. By enabling neuronal
population imaging with subcellular resolution, this modality offers an approach for gaining a fundamental understanding
of brain anatomy and physiology. Proper analysis of calcium imaging data requires denoising, that is separating the signal
from complex physiological noise. To analyze two-photon brain imaging data, we present a signal plus colored noise model
in which the signal is represented as harmonic regression and the correlated noise is represented as an order p
autoregressive process. We provide an efficient cyclic descent algorithm to compute approximate maximum likelihood
parameter estimates by combing a weighted least-squares procedure with the Burg algorithm. We use Akaike information
criterion to guide selection of the harmonic regression and the autoregressive model orders. Our flexible yet parsimonious
modeling approach reliably separates stimulus-evoked fluorescence response from background activity and noise, assesses
goodness of fit, and estimates confidence intervals and signal-to-noise ratio. This refined separation leads to appreciably
enhanced image contrast for individual cells including clear delineation of subcellular details and network activity. The
application of our approach to in vivo imaging data recorded in the ferret primary visual cortex demonstrates that our
method yields substantially denoised signal estimates. We also provide a general Volterra series framework for deriving this
and other signal plus correlated noise models for imaging. This approach to analyzing two-photon calcium imaging data
may be readily adapted to other computational biology problems which apply correlated noise models.
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Introduction

Two-photon microscopy is now widely recognized as a valuable

tool for real-time in vivo imaging of biological systems [1,2]. A two-

photon microscope excites fluorophores in a volume of biological

sample using pulsed lasers to induce the emission of a fluorescence

signal [3]. Typically, a focused laser beam scans the tissue in a two-

dimensional raster pattern, producing a fluorescence image that

typically spans hundreds of cells [4]. The images facilitate highly

informative and quantitative analyses with a range of biological

applications. Two-photon imaging of calcium-sensitive fluorescent

indicators to investigate neural physiology is particularly appealing

because the measured fluorescence is closely related to neural

activity [5]. This imaging modality enables analysis of a broad

spatial scale, ranging from the structure of dendritic spines

(microns) [6–8] to the architecture of neuronal networks

(millimeters) [9–12], as well as analysis of a broad temporal scale

from fast action potentials (milliseconds) [10,12–14] to slow

calcium waves (seconds) [15,16].

Properly separating signal from noise, often termed denoising, is

a crucial signal processing procedure in the analysis of imaging

data. While there has been considerable success in the develop-

ment of two-photon microscopy hardware and experimental

techniques, the corresponding signal processing methodology has

received less attention. The observed fluorescence response

depends upon several factors: 1) the nature of the stimulus and

the modulation of neural activity due to the stimulus; 2)

movements due to highly structured physiological processes; 3)

spontaneous neural activity; and 4) optical and electrical noise.

Current approaches to processing two-photon data consist of

averaging the measured fluorescence levels over multiple trials

followed by kernel-based smoothing or fitting an appropriate curve

to these time-series data [11,17–19]. Averaging, while highly

intuitive and easy to perform, requires a large number of trials

which is often not possible in two-photon imaging experiments.

Principal components analysis (PCA) has also been used for

denoising image data by dimension reduction [14], but in general

it does not exploit the stimulus-driven modulation of the response.

One PCA-based approach preserves only the PCA components

that exceed a certain threshold of correlation with the stimulus

sequence [20]. Fourier analysis of two-photon data recorded in

response to periodic stimulation allows for signal extraction at the

excitation frequency [21,22] and possibly some of its harmonics

[23], but does not model activity at other frequencies. A signal plus

colored noise model has been used to analyze functional magnetic

resonance (fMRI) data [24]. However, the expectation-maximi-

zation estimation algorithm used in that method has high

computational complexity.

Nonlinear approaches to signal analysis could be candidates for

the analysis of the data considered here. These include projective
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filtering, wavelet methods, local linear approximation, and several

other methods [25–28]. We derive our approach by assuming a

nonlinear relationship between the measured fluorescence re-

sponse, the stimulus, and the colored noise. The Volterra series

expansion leads to an approximation of this nonlinear relationship

that relates the measured fluorescence linearly to the harmonic

signal and the correlated noise. Our analysis shows that this

approach to constructing models for two-photon imaging also

yields the commonly used signal plus noise models for fMRI data

analysis.

We propose a novel statistical signal plus correlated noise

(SCN) model for the analysis of the two-photon calcium imaging

data in which the stimulus induced structure is represented as a

harmonic regression and the temporally correlated noise is

represented as an autoregressive process. We present a compu-

tationally efficient cyclic descent algorithm for maximum

likelihood estimation of the model parameters. Our approach

differs from current two-photon image analysis techniques in that

we use a formal likelihood framework to not only separate signal

and noise, but to also select a model, assess model goodness of fit

and make inferences about physiological features in the estimated

images. The high computational efficiency of the algorithm

makes it amenable to automated analysis of large imaging data

sets. By analyzing two-photon calcium imaging data recorded

from the ferret primary visual cortex, we demonstrate that our

approach accurately models the data and provides significantly

denoised images.

Results

Visual stimulation and two-photon image acquisition
Time series traces of two-dimensional images (XYT) with a

field-of-view of approximately 250|250mm were collected at

1Hz from the primary visual cortex of a ferret using a two-photon

microscope (see Methods). The stimulation protocol consisted of

square-wave gratings with 100% contrast which drifted at 3Hz
orthogonally to the orientation and rotated by 100 every second

(each data frame), i.e., the stimulus rotated 3600 in 36sec. The

time series of the response of a neuron to this stimulus

approximated a full orientation tuning curve. This stimulus was

repeated three times. Prior to recording the stimulus responses, 10

image frames were acquired in the absence of any visual stimulus

and their mean provided the estimate of the baseline level at each

pixel. Manually determined boundaries delineate the set of pixels

that define each cell, and each of the n~15 cells thus identified

(Figure S1a) consists of 79+25 pixels (mean+s.d.). The data

consist of the time series of fluorescence on each image pixel. The

relative fluorescence on a given pixel is Dfk=f ~ fk{f0ð Þ=f0, where

fk is the kth time-sample of the measured fluorescence intensity;

k~1, . . . ,K ; f0 is the baseline level; and we have K~108 samples.

Using this orientation stimulus, initial anatomical images of the

neuronal population can be obtained by plotting the pixel-wise

maximum fluorescence across the image time-series, maxk Dfkf g
(Figure 1a). The relative fluorescence traces from the imaged cells

show the diversity of orientation responses (Figure 1b and S1b).

A signal plus correlated noise model
We assume that in each pixel, the measured fluorescence at

each time can be described by a signal plus correlated noise (SCN)

model defined as

fk~skzvk, ð1Þ

where the signal is defined as the order h harmonic regression

sk~mz
Xh

i~1

ai cos
2pi

t
k

� �
zbi sin

2pi

t
k

� �� �
ð2Þ

and t is the period of the stimulus. We assume that the temporally

correlated noise obeys the pth order autoregressive model (AR(p))
given by

vk~
Xp

j~1

ajvk{jzek, ð3Þ

where the ek are assumed to be independent, identically

distributed Gaussian random variables with mean zero and

unknown variance s2. We assume that the zeros of the

characteristic polynomial, 1{
Xp

j~1
ajz

{j , are outside the unit

circle to insure stationarity of the AR(p) model. We model the

signal as a harmonic regression because the measured fluorescence

shows a strong sinusoidal response at the period of the stimulus.

We postulate that this smooth, periodic structure should be well

described by the low-order terms of a Fourier series expansion

defined by the harmonic regression model. The AR(p) model

represents the highly structured physiological and electronic noise

components of the fluorescence measurements. This and other

signal plus correlated noise models can be derived from the

Volterra series framework that we present in Methods.

Efficient approximate maximum likelihood parameter
estimation by cyclic descent

To use the SCN model in Eq. 1 to denoise calcium imaging

data, we estimate its parameters b~ m, a1, b1, . . . ,ah, bhð Þ,
a~ a1, . . . , ap

� �
and s2 by maximum likelihood using a cyclic

descent algorithm. The cyclic descent algorithm provides an

efficient approach for solving this nonlinear estimation problem by

iterating between computing the solutions to two highly tractable

linear estimation problems (see Methods). That is, at iteration n,

given
^
W

{1(n{1)

the estimate of the inverse of the covariance

matrix of vk from iteration n{1, the algorithm computes b̂b(n), the

weighted least-squares estimate of b. Given b̂b(n), the algorithm

computes âa(n) and ŝs2(n) using Burg algorithm and
^
W

{1(n)

using

Levinson-Durbin recursion (Methods). Because of the properties of

the Burg algorithm, we provide AR parameter estimates that yield

a stationary process. The Levinson-Durbin algorithm provides an

efficient means of computing
^
W

{1(n)

from âa(n) and ŝs2(n). This

efficiency is significant for large K since W is a K|K matrix. We

use as the stopping criterion the condition that the relative change

in the estimate of ŝs2 between iterations is smaller than threshold g.

If this stopping criterion is satisfied, the algorithm stops; otherwise,

given
^
W

{1(n)

, the algorithm proceeds to iteration nz1. With this

stopping criterion based on the residual variance, the cyclic

descent algorithm applied to our calcium imaging data consistently

converges in 3 to 5 iterations. This class of iterative algorithms are

known to converge at least linearly [29], and our results show that

the cyclic descent algorithm in fact achieves exponential

convergence (Figure S2). Although this algorithm is highly

efficient, we can further expedite processing, as may be required

for real-time implementation, by reducing the number of

iterations. This cyclic descent algorithm avoids computing the
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gradients and Hessians required for Newton’s procedure and the

multiple iterations characteristic of the expectation maximization

algorithm. A theorem due to Corradi [29] suggests that our cyclic

descent algorithm finds the global maximum of the likelihood.

Choice of model order and assessment of goodness-of-fit
Separation of the fluorescence data into signal and correlated noise

relies on choosing appropriate values of model orders h and p. To

make these selections, we use well-established model selection and

goodness-of-fit criteria, namely the corrected Akaike information

criterion (AICc) and analyses of the correlation structure and spectra

of the residuals from the model fits (Methods). These criteria help

determine the optimal tradeoff between model parsimony and

estimation accuracy. As a representative example, we consider the

AICc for various model orders for one cell (Figure 2a). The AR model

alone can capture much of the periodicity in the data including that

due to the stimulus response, but unlike the SCN model, it does not

decompose the data into stimulus-driven and background compo-

nents. Our approach therefore is to fit a signal-only model first and

determine the optimal h using AICc (Figure 2b). Next, using the

chosen h, we fit the SCN model and determine the optimal p
(Figure 2b). Goodness-of-fit analysis is another important consider-

ation whose purpose is to insure that the residuals, êek, are white

(Methods), confirming that the systematic variance in the data has

been explained by the SCN model. We find that inclusion of an AR

component is necessary to obtain white residuals even when h is large

(Figure 2c). The AR model order suggested by AICc is insufficient and

instead a higher order is required to guarantee white residuals. The

fluorescence data spectrum shows certain dominant periodicities,

some of which correspond to the stimulus frequency and its low

harmonics, and are captured by ŝsk (Figure 2d). The nonuniform

spectrum of background activity, including the significant activity

observed at low frequencies, is captured by the AR component, v̂vk.

The spectrum of residuals, êek, is approximately flat. The normalized

cumulative periodogram (NCP) of v̂vk, falls outside the 95% whiteness

bounds (Figure 2e). In contrast, the êek NCP nearly coincides with

white noise NCP as desired. This analysis assists in determining the

required harmonic and AR model orders, which may vary from cell to

cell. We find that h~4 and p~10 satisfy the above requirements for

most of the cells in our data-set (Figure S3 and Table S1). Once the

optimal SCN model order has been determined and goodness-of-fit

assessment completed, we use the model to make biological inferences.

Tuning curve estimation
We use the SCN model to characterize the relative fluorescence

response to the stimulus at a single pixel. The close fit between the data

and the signal estimate establishes the validity of our model (Figure 3a).

The signal component, ŝsk, provides a denoised estimate of the response

for three trials of stimulus presentation (Figure 3b). The autocorrelation

function and quantiles of the residual, êek, confirm that it is consistent

with an independent Gaussian process (Figure 3c and d). We construct

the denoised response tuning curve, ûu(w), where w is a circular random

variable that represents the stimulus orientation. We also obtain the

approximate 95% confidence intervals (Methods) and analyze the

response characteristics. This signal estimate (Figure 3e) captures the

key features of the neuronal response, such as the location and width of

tuning to the stimulus effect. The use of a Gaussian or cosine curve to fit

the data, as is common practice in neuroscience, would constrain the

response estimate to have a simple, symmetric shape. Our model

allows the tuning curve estimate to reflect the complex shape of the cell

response observed in the data with minimal computational complexity.

Image denoising
We can reconstruct denoised images using the signal component

estimate, ŝsk, at each pixel. A comparison of the fluorescence

response estimates of pixels around a cell obtained with conven-

tional across-trial averaging and with our SCN model (Figure 4a)

demonstrates the enhanced image contrast and clarity provided by

our model. Our denoising method delineates the stimulus response

within the cell soma and allows improved observation of calcium

dynamics around the cell associated with excitation. In a second cell

(Figure 4b), the background activity at the bottom of the frame is

Figure 1. Example of two-photon fluorescence image and individual cell dynamics. (a) Anatomical image of cell population at 150 m
depth obtained by plotting the pixel-wise maximum fluorescence across the movie frames obtained under a rotating orientation stimulus. Brighter
shades represent higher fluorescence intensity. ROIs indicate two neighbouring neurons identified manually, Cell 11 (blue) and Cell 12 (red). (b)
Relative fluorescence time-traces for each of the two neurons in three trials with stimulus orientation indicated by arrows. Solid line and background
region show the mean+s.d. across pixels comprising the cell. Vertical dashed lines mark trial boundaries, at which the stimulus is oriented at 00 w.r.t.
positive x-axis (horizontal) and then rotates counter-clockwise. The response of Cell 12, unlike Cell 11, is specific to the drift direction, exhibiting an
excitatory response at horizontal orientation for one drift direction (1800 orientation) but not the other (00 orientation).
doi:10.1371/journal.pone.0020490.g001
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substantially reduced in intensity by our approach. The increased

contrast of the denoised images reveals additional subcellular

processes not discernible in the conventional images obtained by

averaging (Figure 4c). This opens up the possibility of future work to

characterize the source of these signals and their behavior.

Inferring neuronal characteristics
By denoising two-photon imaging data with the SCN model, we

provide reliable estimates of several quantities that may be used to

describe neuronal behavior. For example, we study the orientation

preferences of the primary visual cortex neurons in our sample. At

each pixel, the preferred orientation is obtained as the orientation

at which the denoised tuning curve peak occurs, i.e.,
�ww~ arg maxwfûu(w)g. As previously reported [9], neighboring cells

show a preference for similar orientations with a smooth spatial

variation (Figure 5a and c). Among the cells, there are different

degrees of deviation from the mean preferred orientation (Figure 5d).

This deviation is particularly high for two of the cells possibly due to

somatic and dendritic dynamics. We calculate the orientation

selectivity from the estimated tuning curve, ûu(w), as the half-width

at half-height. Our analysis of orientation selectivity at each pixel

reveals both spatial trends and intra-cellular variations (Figure 5b). A

wide-ranging level of orientation selectivity is apparent (Figure 5e).

These examples demonstrate that the SCN model can facilitate a

variety of functional analyses with high reliability.

Neuronal signal-to-noise ratio estimation
The ratio of stimulus-evoked response (signal) to background

activity (colored noise) provides a natural definition of the

neuronal signal-to-noise ratio (SNR) and a way to compare the

relative responsiveness of the cells to the stimulus. We calculate the

signal power, Ps from our harmonic model and the noise power,

Pv, from the AR model to obtain

SNR~
Ps

Pv

~

1
2

Ph
i~1

a2
i

�� ��z b2
i

�� ��	 

Ð

s2 1{
Pp
j~1

aje{2pijf

�����
�����
{2

df

: ð4Þ

Figure 2. Model order selection and goodness of fit. The fluorescence time series in this example is from Cell 11 in our data set. (a) Corrected
Akaike information criterion (AICc) as a function of the harmonic (h) and autoregressive model orders (p). The minimum of this surface is achieved
with h~2 and p~2. In the pseudo-color heat map, red and blue represent large and small AICc values, respectively. (b) Left: For a signal-only model
(p~0), AICc suggests h~4 as optimal. Right: For the SCN model with h~4, AICc suggest p~2 as optimal. (c) Percentage of the cell’s pixels for which
the SCN model yields substantially white residuals for given h and p. With h~4, the whiteness criterion is satisfied for all pixels by p~8. In the
pseudo-color heat map, blue and red represent 0 and 100% respectively. (d) Normalized cumulative periodograms (NCPs) of the data and its
component estimates (solid lines) averaged across the cell’s pixels: measured fluorescence data fk (black), stimulus-evoked signal component ŝsk

(blue), stimulus-free background activity v̂vk (red), and residual white noise êek (green). Also shown are 95% whiteness bounds (dashed lines) and NCP
of ideal white noise (dotted line). Temporal correlation in background activity is evident from its highly nonuniform spectrum, while the residuals lie
within the whiteness bounds. (e) Spectra illustrating decomposition of a pixel’s fluorescence time series data into estimate signal component,
background activity, and residual white noise. Dominant lower-frequency components in the data spectrum correspond to the stimulus response and
are captured by ŝsk which has a line spectrum at the first 4 harmonics of the stimulus frequency. The remaining activity, with a nonuniform spectrum,
is captured by the AR component. The spectrum of the residual noise is substantially uniform, confirming whiteness.
doi:10.1371/journal.pone.0020490.g002
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The cells in our data set exhibit a wide range of SNRs (Figure 6a).

The locations of the cells with high SNR (Figure 6b) agree closely

with the anatomical map (Figure 1a), and therefore the pixel-wise

SNR maps can be used to identify robustly the locations of cells

that respond to the given stimulation.

Discussion

We have presented a flexible local likelihood framework for

analyzing two-photon calcium imaging data. Our framework

appreciably enhances image contrast on a pixel-by-pixel basis by

using an SCN model to separate the salient stimulus-evoked neural

responses from the complex forms of physiological and recording

noise common to two-photon imaging experiments. The cyclic

descent algorithm provides a computationally efficient approach

for fitting the SCN model to the time-series of fluorescence

responses. Our framework suggests a straight-forward yet novel

way to track with improved subcellular resolution the temporal

dynamics of individual neurons (Figure 4) and obtain significantly

denoised images of neuronal populations (Figure 5).

We have formulated our analysis as a harmonic regression plus

colored noise problem. Cellular calcium responses have a stochastic

nature and exhibit oscillations with a colored noise component [30], as

demonstrated by calcium recordings from pancreatic acinar cells [31]

and airway myocites [32]. Colored noise also appears in many other

contexts in computational biology, including functional magnetic

resonance imaging (fMRI) [24,33], neural voltage-sensitive dye

imaging [34], circadian rhythms [35], synaptic background activity

in cortical neurons [36–38], gene regulatory networks [39], speech

signals [40], cell locomotion patterns [41], and many others. The

procedures usually applied to these problems, based on expectation

maximization or exact maximum-likelihood procedures, are often

computationally intensive. Our approach suggests an alternate

approximate maximum likelihood procedure that can be applied to

a broad range of such problems, and may offer specific advantages for

analysis in real-time computation and high-throughput processing.

Figure 3. Decomposition of fluorescence data into signal and noise components. The representative time series data is from Cell 11, Pixel
45 in our data set. (a) Relative fluorescence data fk (blue) measured in three consecutive trials (dashed lines: trial boundaries). The fit (red) is the
estimate f̂fk obtained by the signal plus correlated noise model, containing both stimulus-evoked activity and noise. (b) Relative fluorescence data fk

(blue) in three consecutive trials and estimate (red) of the signal component ŝsk (i.e., the stimulus-evoked activity). (c) Autocorrelation function (red) of
residual noise, êek , lies within the 95% whiteness bounds (blue). (d) The quantile-quantile plot of the residuals confirms Gaussianity. The results in (c)
and (d) prove that the residuals are independently and identically distributed Gaussian, and the systematic variance in the data has been explained by
the harmonic regression and autoregressive terms. (e) Orientation tuning curve obtained from the denoised signal estimate in (b). The SCN model
provides a smooth fit to the across-trials mean of the data. Point-wise approximate 95% confidence intervals are also shown. The SCN model
preserves the complex, asymmetric shape of the response tuning curve.
doi:10.1371/journal.pone.0020490.g003
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We developed our analysis framework using a continuous and

periodic stimulus applied to visual cortex cells. Implicit in our approach

is the treatment of intrinsic imaging, as the signal dynamics can be

easily described using our model. Also, with minor modifications, our

framework can be easily extended to imaging protocols using other

stimuli. For example, in some two-photon imaging experiments the

Figure 4. Image denoising and visualization of calcium activity. Differential fluorescence (Dfk) response images from the area around Cell 14
(cell soma marked by blue arrow) to orientation stimulus processed with conventional across-trial averaging and with the SCN model. Successive
frames show the response at orientations (marked by pink arrows) in 300 steps. The SCN model separates the background activity from the signal. (b)
Fluorescence response of Cell 1 along four orientations (soma marked by blue arrow). (c) Fluorescence response of Cell 12 obtained from SCN model
in 100 orientation steps with successive frames acquired at 1 Hz. Slow calcium waves flowing across the cell processes (green arrow) and soma (blue
arrow) are observed due to the enhanced clarity of the denoised image.
doi:10.1371/journal.pone.0020490.g004
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stimulus is applied either in a random noise-like manner to avoid

anticipatory responses [42], or by interspersing blank frames with no

relevant excitatory or inhibitory stimulus present [9]. To apply our

approach to data recorded from any of these experiments, we simply

replace the stimulus represented as a harmonic regression in the

current SCN model with an appropriate formulation of the stimulus

model for the given protocol. The remainder of the analysis paradigm,

including model fitting, model selection, goodness-of-fit assessment and

inference, then proceeds as described above.

Our analytical framework is general so that a number of current

statistical models that describe imaging modalities can be easily

derived from it. For example, a commonly used model for fMRI

data analysis [43] can be obtained from our Volterra series

framework (see Methods) as

f (t)~

ð t

0

g(t)Kg(t{u)duz

ð t

0

v(t{u)Kv(u)duze(t)

&
ð t

0

g(t)Kg(t{u)duz
Xp

j~1

ajvt{jze(t) ð5Þ

where Kg(t)~taebt is a gamma function used to model the

hemodynamic response of the body. The second term on the right

represents physiological noise.

We assumed a signal plus Gaussian noise model in our

analysis. However, in two-photon microscopy and other optical

imaging modalities, the measured fluorescence intensity is a

function of the discrete number of incident photons, and is

therefore fundamentally a counting process and not necessarily

Gaussian. The counting process nature of the two-photon

experiments becomes more apparent as the acquisition rate

increases [44]. The measured fluorescence in some two-photon

imaging experiments may also exhibit non-Gaussian behavior

due to distortions introduced during acquisition or post-

processing. If the Gaussian assumption no longer holds, we

can develop alternative likelihood approaches based on

appropriately chosen non-Gaussian models. For example,

neuronal spike trains can be extracted from two-photon data

using template deconvolution [45,46]. Non-Gaussian likelihoods

based on the theory of point processes and implemented using

the generalized linear model could be adapted to analyze these

two-photon imaging data.

We modeled the time-series of neural responses in each pixel

separately and did not consider inter-pixel dependencies. Such

dependencies arise because: the activity of a single cell is captured

across multiple pixels; retinotopy and network dependencies may

lead to similar response in contiguous regions of the image; and

data pre-processing procedures such as spatial smoothing

introduce correlations. This problem, although challenging,

currently confronts all biological imaging modalities and should

ideally be studied by formulating appropriate biologically-based

spatiotemporal models.

We have illustrated the application of our framework in offline

analyses. However, due to its low computational complexity, our

current analysis paradigm can be readily adapted to conduct large-

volume, high-throughput imaging data analyses in real-time.

These and other related aspects will be the topics of future reports.

Figure 5. Spatial distribution of preferred orientation and orientation selectivity after denoising with SCN model. (a) Visual response
characteristics for pixels within cell boundaries identified manually from Figure 1a. Pixel-wise preferred orientation is indicated by the colormap, and
mean preferred orientation of each cell is indicated by the black arrow originating from the cell center. Colorbar and colored arrows represent the
orientation scale in degrees. (b) Orientation selectivity, a measure of tuning sharpness evaluated as the half-width range at half-height response, is
indicated by the colormap. Colorbar represents angle in degrees. (c) Cell-wise preferred orientation according to cell indices defined in Figure S1a,
evaluated as the mean preferred orientation across all pixels in a cell (errorbars indicate 95% confidence intervals on the mean). (d) Circular dispersion
of cellular orientation response. (e) Orientation selectivity of the cell (mean+s.e.m. across pixels).
doi:10.1371/journal.pone.0020490.g005
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Methods

Experimental procedures
Two-photon imaging of the fluorescent calcium indicator Oregon

Green Bapta (OGB) was performed in the visual cortex of

anesthetized ferrets. Neurons were bulk-loaded with OGB by

intracortical injection of the AM-ester conjugated form of OGB

using standard techniques [9,18,47]. Imaging was performed with a

custom-made two-photon laser scanning microscope consisting of a

modified Olympus Fluoview confocal scan head and a titanium/

sapphire laser providing approximately 100 fsec pulses at 80 MHz

pumped by a 10 W solid-state source [48]. Fluorescence was

detected using photomultiplier tubes in whole-field detection mode

and a 20|, 0:95 NA lens. Image acquisition was accomplished using

Fluoview software. The images were taken from cortical layers 2/3,

and this area was readily distinguished from layer 1 on the basis of

the relative density of astrocytes and neurons. Visual stimuli,

generated with Matlab using the PsychoPhysics Toolbox [49], were

delivered via a 17
00

LCD display placed 0:15 m away from the eyes of

the animal. Neurons with relative fluorescence clearly distinguish-

able from the neuropil were chosen for subsequent cellular analysis.

A Volterra series framework for signal plus colored noise
imaging models

We assume that the measured fluorescence, f (t), in a two-

photon calcium imaging experiment is a function of a time-

varying stimulus, g(t), and noise in the system, v(t). We

further assume that the response, s(t), of the biological system

depends on a nonlinear transformation of the stimulus input

to the biological system. We can express the effect of the

input stimulus and noise on the measured fluorescence at a

pixel as

f tð Þ~H s g tð Þ½ �,v tð Þf g: ð6Þ

Expanding the right side of Eq. 6 in a Volterra series [50] yields

f tð Þ~
ð t

0

s g tð Þ½ �Kg t{uð Þduz

ð t

0

v t{uð ÞKv(u)du

z

ð t

0

ð t

0

s g tð Þ½ �Kgg t{u,t{wð Þdudwz

ð t

0

ð t

0

v t{uð Þv t{wð ÞKvv u,wð Þdudw

z

ð t

0

ð t

0

s g tð Þ½ �v tð ÞKgv t{u,t{wð Þdudwz . . . ð7Þ

Take a discrete approximation to the first two terms on the

right of Eq. 7 and assume that the second-order terms are

sufficiently small so that they can be approximated as ek,

independent Gaussian noise with mean zero and variance s2.

Then Eq. 7 becomes

fk~
XL

l~1

s gkð ÞKg,k{lz
Xp

j~1

vk{jajzek, ð8Þ

where k~1, . . . , K denotes the time-samples. We can express

s(gk) in terms of its Fourier series expansion. If s(gk) is periodic

and smooth, its Fourier expansion can be well represented by a

finite series. Thus, taking the first h terms of the series, we can

write

fk~
XL

l~1

mz
Xh

i~1

ai cos
2pi

t
k

� �
zbi sin

2pi

t
k

� �" #
Kg,k{lz

Xp

j~1

ajvk{jzek,

ð9Þ

where t is the period of the input stimulus. In the two-photon

imaging experiment, we assume that the effect of the stimulus on

the system is instantaneous so that the discrete kernel can be

written in terms of the Kronecker delta function as

Kx,y~dx,y~
1 if x~y

0 otherwise

�
: ð10Þ

Figure 6. Neuronal signal-to-noise ratio (SNR) estimated using
the SCN model. The SNR is the ratio of the power of stimulus-evoked
signal to that of stimulus-free background activity. (a) Signal power (Ps),
noise power (Pv), and SNR of all 15 neurons (mean+s.e.m. computed
across pixels). (b) Spatial map of SNR at each pixel (shown in decibel
scale) agrees closely with the anatomical map in Figure 1a.
doi:10.1371/journal.pone.0020490.g006
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Substituting Eq. 10 into Eq. 9 yields

fk~mz
Xh

i~1

ai cos
2pi

t
k

� �
zbi sin

2pi

t
k

� �� �
z
Xp

j~1

ajvk{jzek, ð11Þ

which is our model given in Eq. 1. If our model had not fit the data

well, then we could use Eq. 7 to derive a modified model by

including one or more of the second order terms.

Burg algorithm
The Burg algorithm for autoregressive (AR) coefficient estima-

tion uses least squares forward-backward prediction error

minimization and is constrained to satisfy Levinson-Durbin

recursions (LDR) [51,52]. For the AR(p) model in Eq. 3, the

Burg algorithm estimates the coefficients fa1, . . . ,apg and

innovations variance s2, given the time series vk for

k~1, . . . ,K , as follows [52].

Require: E vkf g~0

f
(0)
k /vk

b
(0)
k /vk

ŝs2(0)/E vkj j2
n o

for n~1 to p do

âa(n)
n /2

PK
k~nz1 f

(n{1)
k b

(n{1)
k{1

� �
PK

k~nz1 f
(n{1)

k

��� ���2z b
(n{1)
k{1

��� ���2� �

ŝs2(n)/ 1{ âa(n)
n

�� ��2� �
ŝs2(n{1)

if nw1 then

for j~1 to n{1 do

âa(n)
j /âa(n{1)

j {âa(n)
n âa(n{1)

n{1

end for

for k~nz1 toK do

f
(n)

k /f
(n{1)

k {âa(n)
n f

(n{1)
k{1

end for

for k~n to K{1 do

b
(n)
k /b

(n{1)
k{1 {âa(n)

n b
(n{1)
k

end for

end for

end for

âa1, . . . , âap, ŝs2
	 


/ âa
(n)
1 , . . . , âa(n)

p , ŝs2(n)
n o

return âa1, . . . ,âap,ŝs2
	 


Cholesky factorization
The K|K covariance matrix of the AR process vk can be written

in its Cholesky form as W~LDLT . The inverse matrix W{1~

L{T D{1L{1 is used in our cyclic descent algorithm and can be

calculated efficiently using Levinson-Durbin recursions, where [52]

D{1~diag
1

ŝs2(0)
, . . . ,

1

ŝs2(p)
, . . . ,

1

ŝs2(p)

� �
, ð12Þ

and

L{1~

1

{âa(1)
1 1

{âa(2)
2 {âa(2)

1 1

..

. ..
. ..

.

{âa(p)
p {âa(p)

p{1 {âa(p)
p{2 . . .

{âa(p)
p {âa(p)

p{1 . . .

..

. ..
. ..

.
P

. . . {âa
(p)
1 1

. . . {âa
(p)
2 {âa

(p)
1 1

2
666666666666666666664

3
777777777777777777775

:ð13Þ

The coefficient and variance estimates of AR models up to order p

are computed by the Burg algorithm during AR(p) model

parameter estimation and are therefore already available to

populate D{1 and L{1. Hence this is a highly efficient procedure

for computing W{1 without matrix inversion.

Cyclic descent algorithm
We use the cyclic descent algorithm for joint estimation of

autoregressive and harmonic coefficient vectors, â and b̂, from the

fluorescence data vector f~ fk½ �k~1,...,K . The algorithm proceeds

as follows.

n/0

W(n)/IK

ŝs2(n)/E vkj j2
n o

repeat

n/nz1

b̂b(n)/ XTW{1(n{1)X
� �{1

XTW{1(n{1)f

v̂
(n)/f{Xb̂b(n)

Compute âa(n) and ŝs2(n) from v̂
(n)

using Burg algorithm.

Compute W{1(n) from its Cholesky factors using Levinson-Durbin

recursion untill ŝs2(n){ŝs2(n{1)
�� ��=ŝs2(n{1)

vg

âa,b̂b,ŝs2
n o

/ âa(n),b̂b(n),ŝs2(n)
n o

return âa,b̂b,ŝs2
n o
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Statistical methods
As our SCN model consists of two linear components, it is

straight-forward to obtain confidence bounds and construct

significance tests for the model parameters. For the ith harmonic

regression coefficient estimate, b̂bi, the approximate 95% confi-

dence interval is b̂bi+seita=2,dof where sei~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XTŴ

{1

X

� �{1

ii

s
;

K{2h{1; and a~0:05 [53]. Similarly, for the jth coefficient of

the AR(p) process, we have the confidence interval âaj+sejta=2,dof

where sej~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2(K{p){1 V̂

T
V̂

� �{1

jj

s
and dof ~K{p. Here,

V̂~ v̂{1, . . . ,̂v{p

� �
contains the time-lagged samples of the

AR(p) process and v̂{q~ v̂v{q, . . . ,v̂vK{q

� �T
. Based on these

confidence intervals, we can design the t-test of significance for

the model coefficients. The alternate hypothesis for the signifi-

cance of the harmonic coefficients is H1~ b̂bi=sei

��� ���wta=2,dof , and

the alternative hypothesis for AR coefficient significance is defined

similarly. The corresponding parameter is significant if the

hypothesis is rejected.

We use the corrected Akaike information criterion (AICc) for

model order selection. For the order h harmonic regression and

AR(p) model, we define AIC~K log s2z2(2hzpz1) and

AICc~AICz2(2hzpz1)(2hzpz2)= K{ 2hzpz2ð Þ½ �: ð14Þ

We use residual analysis to confirm the whiteness of our model’s

residual noise, ek. The normalized autocorrelation function (ACF)

of the residuals at lag t is given by rt(e)~dt=d0, where

dt~K{1
XK{t

m~1
em{�eeð Þ emzt{�eeð Þ. The approximate 95% white-

ness bounds are +1:96=
ffiffiffiffi
K
p

and the corresponding Ljung-Box

portmanteau test statistic is Q~K(Kz2)
XT

t~1
r2

t(e)=(K{t),
where conventionally T~20 ACF taps are considered. The null

hypothesis for the whiteness test is H0~Q*x2
a,T{p, where a

denotes the alpha level, taken as 5% in our analysis.

We use circular statistics to analyze circular random variables

such as orientation w. The circular mean is calculated as

�ww~ tan{1
XN

i~1
sin wi=

XN

i~1
cos wi

n o
with its 95% confidence

interval given by �ww+ sin{1 za=2sw

� �
, where sw~

ffiffiffiffiffiffiffiffiffiffiffi
dw=N

q
is

circular standard error and

dw~

1{ 1
N

PN
i~1

cos 2(wi{
�ww)

����
����

2
N

PN
i~1

cos (wi{
�ww)

ð15Þ

is circular dispersion [54].
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Supporting Information

Figure S1 Two-photon fluorescence image of a cell
population. (a) Anatomical image of a population of 15 cells.

Brighter gray shades represent higher fluorescence intensity. ROIs

and cell indices indicate all of the cells identified manually. (b)

Orientation tuning curve of each cell obtained by averaging the

measured relative fluorescence across three trials.

(TIF)

Figure S2 Convergence of the parameter estimates
obtained with cyclic descent. (a) Iterative estimates of the

model parameters, namely the residual variance (s2), intercept (m),

harmonic coefficients (ai and bi; i~1, . . . ,h), autoregressive

coefficients (aj ; j~1, . . . , p) and residual variance (s2), for the

fluorescence time series in Figure 3a. (b) Percentage difference

between the successive estimates of the model parameters in a. For

the nth iteration, the percentage difference is calculated as

Du(n)~ u(n){un{1=un
�� ��|100, where u(n) is the estimate of

parameter u at the nth iteration and u(0)~0. The y-axis has a

logarithmic scale.

(TIF)

Figure S3 Model order selection. (a) AICc surface for each

of the cells in our data set averaged across the pixels for that cell

(blue: low; red: high). (b) AICc as a function of the harmonic order

when an AR component is not fit to the residual of the harmonic

regression. (c) AICc as a function of the AR order when the

optimal harmonic order from b is used. (d) Percentage of pixels of

each cell that pass the Ljung-Box whiteness test (blue: 0%; red:

100%).

(TIF)

Table S1 Optimal harmonic and AR model orders. The

table shows the optimal model orders for each cell, obtained using

AICc and Ljung-Box test. Based on these results, we conclude that

for our data set, a good fit to the data is obtained with

approximately 4 harmonics and 10 AR coefficients.

(DOC)
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