10,435 research outputs found
Theoretical study of the charge transport through C60-based single-molecule junctions
We present a theoretical study of the conductance and thermopower of
single-molecule junctions based on C60 and C60-terminated molecules. We first
analyze the transport properties of gold-C60-gold junctions and show that these
junctions can be highly conductive (with conductances above 0.1G0, where G0 is
the quantum of conductance). Moreover, we find that the thermopower in these
junctions is negative due to the fact that the LUMO dominates the charge
transport, and its magnitude can reach several tens of micro-V/K, depending on
the contact geometry. On the other hand, we study the suitability of C60 as an
anchoring group in single-molecule junctions. For this purpose, we analyze the
transport through several dumbbell derivatives using C60 as anchors, and we
compare the results with those obtained with thiol and amine groups. Our
results show that the conductance of C60-terminated molecules is rather
sensitive to the binding geometry. Moreover, the conductance of the molecules
is typically reduced by the presence of the C60 anchors, which in turn makes
the junctions more sensitive to the functionalization of the molecular core
with appropriate side groups.Comment: 9 pages, 7 figure
Field enhancement in subnanometer metallic gaps
Motivated by recent experiments [Ward et al., Nature Nanotech. 5, 732
(2010)], we present here a theoretical analysis of the optical response of
sharp gold electrodes separated by a subnanometer gap. In particular, we have
used classical finite difference time domain simulations to investigate the
electric field distribution in these nanojunctions upon illumination. Our
results show a strong confinement of the field within the gap region, resulting
in a large enhancement compared to the incident field. Enhancement factors
exceeding 1000 are found for interelectrode distances on the order of a few
angstroms, which are fully compatible with the experimental findings. Such huge
enhancements originate from the coupling of the incident light to the
evanescent field of hybrid plasmons involving charge density oscillations in
both electrodes.Comment: 4 pages, 3 figures, to appear in Physical Review
Role of electronic structure in photoassisted transport through atomic-sized contacts
We study theoretically quantum transport through laser-irradiated metallic
atomic-sized contacts. The radiation field is treated classically, assuming its
effect to be the generation of an ac voltage over the contact. We derive an
expression for the dc current and compute the linear conductance in one-atom
thick contacts as a function of the ac frequency, concentrating on the role
played by electronic structure. In particular, we present results for three
materials (Al, Pt, and Au) with very different electronic structures. It is
shown that, depending on the frequency and the metal, the radiation can either
enhance or diminish the conductance. This can be intuitively understood in
terms of the energy dependence of the transmission of the contacts in the
absence of radiation.Comment: 7 pages, 7 figures; four new figures adde
Effect of the Introduction of Impurities on the Stability Properties of Multibreathers at Low Coupling
sing a theorem dubbed the {\em Multibreather Stabiliy Theorem} [Physica D 180
(2003) 235-255] we have obtained the stability properties of multibreathers in
systems of coupled oscillators with on-site potentials, with an inhomogeneity.
Analytical results are obtained for 2-site, 3-site breathers, multibreathers,
phonobreathers and dark breathers. The inhomogeneity is considered both at the
on-site potential and at the coupling terms. All the results have been checked
numerically with excellent agreement. The main conclusion is that the
introduction of a impurity does not alter the stability properties.Comment: 20 pages, 9 figure
Multibreather and vortex breather stability in Klein--Gordon lattices: Equivalence between two different approaches
In this work, we revisit the question of stability of multibreather
configurations, i.e., discrete breathers with multiple excited sites at the
anti-continuum limit of uncoupled oscillators. We present two methods that
yield quantitative predictions about the Floquet multipliers of the linear
stability analysis around such exponentially localized in space, time-periodic
orbits, based on the Aubry band method and the MacKay effective Hamiltonian
method and prove that their conclusions are equivalent. Subsequently, we
showcase the usefulness of the methods by a series of case examples including
one-dimensional multi-breathers, and two-dimensional vortex breathers in the
case of a lattice of linearly coupled oscillators with the Morse potential and
in that of the discrete model
Stability of non-time-reversible phonobreathers
Non-time reversible phonobreathers are non-linear waves that can transport
energy in coupled oscillator chains by means of a phase-torsion mechanism. In
this paper, the stability properties of these structures have been considered.
It has been performed an analytical study for low-coupling solutions based upon
the so called {\em multibreather stability theorem} previously developed by
some of the authors [Physica D {\bf 180} 235]. A numerical analysis confirms
the analytical predictions and gives a detailed picture of the existence and
stability properties for arbitrary frequency and coupling.Comment: J. Phys. A.:Math. and Theor. In Press (2010
Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport
We develop nonequilibribrium Green's function based transport theory, which
includes effects of nonadiabatic nuclear motion in the calculation of the
electric current in molecular junctions. Our approach is based on the
separation of slow and fast timescales in the equations of motion for the
Green's functions by means of the Wigner representation. Time derivatives with
respect to central time serves as a small parameter in the perturbative
expansion enabling the computation of nonadiabatic corrections to molecular
Green's functions. Consequently, we produce series of analytic expressions for
non-adiabatic electronic Green's functions (up to the second order in the
central time derivatives); which depend not solely on instantaneous molecular
geometry but likewise on nuclear velocities and accelerations. Extended formula
for electric current is derived which accounts for the non-adiabatic
corrections. This theory is concisely illustrated by the calculations on a
model molecular junction
Opportunities and limitations of transition voltage spectroscopy: a theoretical analysis
In molecular charge transport, transition voltage spectroscopy (TVS) holds
the promise that molecular energy levels can be explored at bias voltages lower
than required for resonant tunneling. We investigate the theoretical basis of
this novel tool, using a generic model. In particular, we study the length
dependence of the conducting frontier orbital and of the 'transition voltage'
as a function of length. We show that this dependence is influenced by the
amount of screening of the electrons in the molecule, which determines the
voltage drop to be located at the contacts or across the entire molecule. We
observe that the transition voltage depends significantly on the length, but
that the ratio between the transition voltage and the conducting frontier
orbital is approximately constant only in strongly screening (conjugated)
molecules. Uncertainty about the screening within a molecule thus limits the
predictive power of TVS. We furthermore argue that the relative length
independence of the transition voltage for non-conjugated chains is due to
strong localization of the frontier orbitals on the end groups ensuring binding
of the rods to the metallic contacts. Finally, we investigate the
characteristics of TVS in asymmetric molecular junctions. If a single level
dominates the transport properties, TVS can provide a good estimate for both
the level position and the degree of junction asymmetry. If more levels are
involved the applicability of TVS becomes limited.Comment: 8 pages, 12 figure
Breather Statics and Dynamics in Klein--Gordon Chains with a Bend
In this communication, we examine a nonlinear model with an impurity
emulating a bend. We justify the geometric interpretation of the model and
connect it with earlier work on models including geometric effects. We focus on
both the bifurcation and stability analysis of the modes that emerge as a
function of the strength of the bend angle, but we also examine dynamical
effects including the scattering of mobile localized modes (discrete breathers)
off of such a geometric structure. The potential outcomes of such numerical
experiments (including transmission, trapping within the bend as well as
reflection) are highlighted and qualitatively explained. Such models are of
interest both theoretically in understanding the interplay of breathers with
curvature, but also practically in simple models of photonic crystals or of
bent chains of DNA.Comment: 14 pages, 16 figure
- …