21,445 research outputs found
Measuring impact of academic research in computer and information science on society
Academic research in computer & information science (CIS) has
contributed immensely to all aspects of society. As academic
research today is substantially supported by various government
sources, recent political changes have created ambivalence
amongst academics about the future of research funding. With
uncertainty looming, it is important to develop a framework to
extract and measure the information relating to impact of CIS
research on society to justify public funding, and demonstrate the
actual contribution and impact of CIS research outside academia.
A new method combining discourse analysis and text mining of a
collection of over 1000 pages of impact case study documents
written in free-text format for the Research Excellence
Framework (REF) 2014 was developed in order to identify the
most commonly used categories or headings for reporting impact
of CIS research by UK Universities (UKU). According to the
research reported in REF2014, UKU acquired 83 patents in
various areas of CIS, created 64 spin-offs, generated £857.5
million in different financial forms, created substantial
employment, reached over 6 billion users worldwide and has
helped save over £1 billion Pounds due to improved processes etc.
to various sectors internationally, between 2008 and 2013
Recommended from our members
Effect of side chains on the dielectric properties of alkyl esters derived from palm kernel oil
Alkyl ester derivatives were synthesized from laboratory purified palm kernel oil. The steps in the synthesis involved transesterification of palm kernel oil to produce a methyl ester, followed by epoxidation and then the grafting of side chains by esterification with propionic and butyric anhydride. The dielectric and thermal properties of the ester derivatives were analyzed and compared with the methyl ester. The melting point of the ester derivatives were found to reduce with side chain attachment and antioxidant improved its thermal stability. The dielectric loss was dominated by mobile charged particles and the chemical modification appeared to increase the rate at which electric double layer was formed at the electrode-liquid interface. The esters possessed excellent breakdown strengths suggesting that the processing to optimize their physical properties did not have a negative influence on their electrical breakdown strength. This product may prove useful as an insulation fluid in Electrical Power Transformers
Image synthesis for SAR system, calibration and processor design
The Point Scattering Method of simulating radar imagery rigorously models all aspects of the imaging radar phenomena. Its computational algorithms operate on a symbolic representation of the terrain test site to calculate such parameters as range, angle of incidence, resolution cell size, etc. Empirical backscatter data and elevation data are utilized to model the terrain. Additionally, the important geometrical/propagation effects such as shadow, foreshortening, layover, and local angle of incidence are rigorously treated. Applications of radar image simulation to a proposed calibrated SAR system are highlighted: soil moisture detection and vegetation discrimination
Generalized Background-Field Method
The graphical method discussed previously can be used to create new gauges
not reachable by the path-integral formalism. By this means a new gauge is
designed for more efficient two-loop QCD calculations. It is related to but
simpler than the ordinary background-field gauge, in that even the triple-gluon
vertices for internal lines contain only four terms, not the usual six. This
reduction simplifies the calculation inspite of the necessity to include other
vertices for compensation. Like the ordinary background-field gauge, this
generalized background-field gauge also preserves gauge invariance of the
external particles. As a check of the result and an illustration for the
reduction in labour, an explicit calculation of the two-loop QCD
-function is carried out in this new gauge. It results in a saving of
45% of computation compared to the ordinary background-field gauge.Comment: 17 pages, Latex, 18 figures in Postscrip
The Prediction of Mass of Z'-Boson from Mixing
B_q^0-B_^0 bar mixing offers a profound probe into the effects of new
physics beyond the Standard Model. In this paper, and
mass differences are considered taking the effect of both
Z-and Z' -mediated flavour-changing neutral currents in the
mixing (q = d, s). Our estimated mass of Z' boson is accessible at the
experiments LHC and B-factories in near future.Comment: 11 pages, 02 Figure
Proposed method for searches of gravitational waves from PKS 2155-304 and other blazar flares
We propose to search for gravitational waves from PKS 2155-304 as well as
other blazars. PKS 2155-304 emitted a long duration energetic flare in July
2006, with total isotropic equivalent energy released in TeV gamma rays of
approximately ergs. Any possible gravitational wave signals
associated with this outburst should be seen by gravitational wave detectors at
the same time as the electromagnetic signal. During this flare, the two LIGO
interferometers at Hanford and the GEO detector were in operation and
collecting data. For this search we will use the data from multiple
gravitational wave detectors. The method we use for this purpose is a coherent
network analysis algorithm and is called {\tt RIDGE}. To estimate the
sensitivity of the search, we perform numerical simulations. The sensitivity to
estimated gravitational wave energy at the source is about
ergs for a detection probability of 20%. For this search, an end-to-end
analysis pipeline has been developed, which takes into account the motion of
the source across the sky.Comment: 10 pages, 7 figures. Contribution to 12th Gravitational Wave Data
Analysis Workshop. Submitted to Classical and Quantum Gravity. Changes in
response to referee comment
Search algorithm for a gravitational wave signal in association with Gamma Ray Burst GRB030329 using the LIGO detectors
One of the brightest Gamma Ray Burst ever recorded, GRB030329, occurred
during the second science run of the LIGO detectors. At that time, both
interferometers at the Hanford, WA LIGO site were in lock and acquiring data.
The data collected from the two Hanford detectors was analyzed for the presence
of a gravitational wave signal associated with this GRB. This paper presents a
detailed description of the search algorithm implemented in the current
analysis.Comment: To appear in the Proceedings of 8th Gravitational Wave Data Analysis
Workshop (Milwaukee, WI) (Class. Quantum Grav.
Bilepton effects on the WWV^* vertex in the 331 model with right-handed neutrinos via a SU_L(2)XU_Y(1) covariant quantization scheme
In a recent paper, we investigated the effects of the massive charged gauge
bosons (bileptons) predicted by the minimal 331 model on the off-shell vertex
WWV^* (V=gamma, Z) using a SU_L(2) X U_Y(1) covariant gauge-fixing term for the
bileptons. We proceed along the same lines and calculate the effects of the
gauge bosons predicted by the 331 model with right-handed neutrinos. It is
found that the bilepton effects on the WWV^* vertex are of the same order of
magnitude than those arising from the SM and several of its extensions,
provided that the bilepton mass is of the order of a few hundred of GeVs. For
heavier bileptons, their effects on the WWV^* vertex are negligible. The
behavior of the form factors at high energies is also discussed as it is a
reflect of the gauge invariance and gauge independence of the WWV^* Green
function obtained via our quantization method.Comment: Replaced to match published versio
QED in external fields, a functional point of view
A functional partial differential equation is set for the proper graphs
generating functional of QED in external electromagnetic fields. This equation
leads to the evolution of the proper graphs with the external field amplitude
and the external field gauge dependence of the complete fermion propagator and
vertex is derived non-perturbativally.Comment: 8 pages, published versio
The Advanced LIGO Photon Calibrators
The two interferometers of the Laser Interferometry Gravitaional-wave
Observatory (LIGO) recently detected gravitational waves from the mergers of
binary black hole systems. Accurate calibration of the output of these
detectors was crucial for the observation of these events, and the extraction
of parameters of the sources. The principal tools used to calibrate the
responses of the second-generation (Advanced) LIGO detectors to gravitational
waves are systems based on radiation pressure and referred to as Photon
Calibrators. These systems, which were completely redesigned for Advanced LIGO,
include several significant upgrades that enable them to meet the calibration
requirements of second-generation gravitational wave detectors in the new era
of gravitational-wave astronomy. We report on the design, implementation, and
operation of these Advanced LIGO Photon Calibrators that are currently
providing fiducial displacements on the order of
m/ with accuracy and precision of better than 1 %.Comment: 14 pages, 19 figure
- …