976 research outputs found
Wind tunnel test results of a new leading edge flap design for highly swept wings, a vortex flap
A leading edge flap design for highly swept wings, called a vortex flap, was tested on an arrow wing model in a low speed wind tunnel. A vortex flap differs from a conventional plain flap in that it has a leading edge tab which is counterdeflected from the main portion of the flap. This results in intentional separation at the flap leading edge, causing a vortex to form and lie on the flap. By trapping this vortex, the vortex flap can result in significantly improved wing flow characteristics relative to conventional flaps at moderate to high angles of attack, as demonstrated by the flow visualization results of this tests
F-111 natural laminar flow glove flight test data analysis and boundary layer stability analysis
An analysis of 34 selected flight test data cases from a NASA flight program incorporating a natural laminar flow airfoil into partial wing gloves on the F-111 TACT airplane is given. This analysis determined the measured location of transition from laminar to turbulent flow. The report also contains the results of a boundary layer stability analysis of 25 of the selected cases in which the crossflow (C-F) and Tollmien-Schlichting (T-S) disturbance amplification factors are correlated with the measured transition location. The chord Reynolds numbers for these cases ranges from about 23 million to 29 million, the Mach numbers ranged from 0.80 to 0.85, and the glove leading-edge sweep angles ranged from 9 deg to 25 deg. Results indicate that the maximum extent of laminar flow varies from 56% chord to 9-deg sweep on the upper surface, and from 51% chord at 16-deg sweep to 6% chord at 25-deg sweep on the lower. The results of the boundary layer stability analysis indicate that when both C-F and T-S disturbances are amplified, an interaction takes place which reduces the maximum amplification factor of either type of disturbance that can be tolerated without causing transition
High resolution CMB power spectrum from the complete ACBAR data set
In this paper, we present results from the complete set of cosmic microwave
background (CMB) radiation temperature anisotropy observations made with the
Arcminute Cosmology Bolometer Array Receiver (ACBAR) operating at 150 GHz. We
include new data from the final 2005 observing season, expanding the number of
detector-hours by 210% and the sky coverage by 490% over that used for the
previous ACBAR release. As a result, the band-power uncertainties have been
reduced by more than a factor of two on angular scales encompassing the third
to fifth acoustic peaks as well as the damping tail of the CMB power spectrum.
The calibration uncertainty has been reduced from 6% to 2.1% in temperature
through a direct comparison of the CMB anisotropy measured by ACBAR with that
of the dipole-calibrated WMAP5 experiment. The measured power spectrum is
consistent with a spatially flat, LambdaCDM cosmological model. We include the
effects of weak lensing in the power spectrum model computations and find that
this significantly improves the fits of the models to the combined ACBAR+WMAP5
power spectrum. The preferred strength of the lensing is consistent with
theoretical expectations. On fine angular scales, there is weak evidence (1.1
sigma) for excess power above the level expected from primary anisotropies. We
expect any excess power to be dominated by the combination of emission from
dusty protogalaxies and the Sunyaev-Zel'dovich effect (SZE). However, the
excess observed by ACBAR is significantly smaller than the excess power at ell
> 2000 reported by the CBI experiment operating at 30 GHz. Therefore, while it
is unlikely that the CBI excess has a primordial origin; the combined ACBAR and
CBI results are consistent with the source of the CBI excess being either the
SZE or radio source contamination.Comment: Submitted to ApJ; Changed to apply a WMAP5-based calibration. The
cosmological parameter estimation has been updated to include WMAP
- …