1,423 research outputs found

    Seismic signature of envelope penetrative convection: the CoRoT star HD 52265

    Full text link
    Aims: We aim at characterizing the inward transition from convective to radiative energy transport at the base of the convective envelope of the solar-like oscillator HD 52265 recently observed by the CoRoT satellite. Methods: We investigated the origin of one specific feature found in the HD 52265 frequency spectrum. We modelled the star to derive the internal structure and the oscillation frequencies that best match the observations and used a seismic indicator sensitive to the properties of the base of the envelope convection zone. Results: The seismic indicators clearly reveal that to best represent the observed properties of HD 52265, models must include penetrative convection below the outer convective envelope. The penetrative distance is estimated to be 0.95HP\sim0.95 H_P, which corresponds to an extent over a distance representing 6.0 per cents of the total stellar radius, significantly larger than what is found for the Sun. The inner boundary of the extra-mixing region is found at 0.800±0.004R0.800\pm0.004 R where R=1.3RR=1.3 R_\odot is the stellar radius. Conclusions: These results contribute to the tachocline characterization in stars other than the Sun.Comment: 4 pages, 4 figures, accepted for publication in Astronomy & Astrophysics Letter

    Simulations of core convection in rotating A-type stars: Differential rotation and overshooting

    Full text link
    We present the results of 3--D simulations of core convection within A-type stars of 2 solar masses, at a range of rotation rates. We consider the inner 30% by radius of such stars, thereby encompassing the convective core and some of the surrounding radiative envelope. We utilize our anelastic spherical harmonic (ASH) code, which solves the compressible Navier-Stokes equations in the anelastic approximation, to examine highly nonlinear flows that can span multiple scale heights. The cores of these stars are found to rotate differentially, with central cylindrical regions of strikingly slow rotation achieved in our simulations of stars whose convective Rossby number (R_{oc}) is less than unity. Such differential rotation results from the redistribution of angular momentum by the nonlinear convection that strongly senses the overall rotation of the star. Penetrative convective motions extend into the overlying radiative zone, yielding a prolate shape (aligned with the rotation axis) to the central region in which nearly adiabatic stratification is achieved. This is further surrounded by a region of overshooting motions, the extent of which is greater at the equator than at the poles, yielding an overall spherical shape to the domain experiencing at least some convective mixing. We assess the overshooting achieved as the stability of the radiative exterior is varied, and the weak circulations that result in that exterior. The convective plumes serve to excite gravity waves in the radiative envelope, ranging from localized ripples of many scales to some remarkable global resonances.Comment: 48 pages, 16 figures, some color. Accepted to Astrophys. J. Color figures compressed with appreciable loss of quality; a PDF of the paper with better figures is available at http://lcd-www.colorado.edu/~brownim/core_convectsep24.pd

    Numerical constraints on the model of stochastic excitation of solar-type oscillations

    Full text link
    Analyses of a 3D simulation of the upper layers of a solar convective envelope provide constraints on the physical quantities which enter the theoretical formulation of a stochastic excitation model of solar p modes, for instance the convective velocities and the turbulent kinetic energy spectrum. These constraints are then used to compute the acoustic excitation rate for solar p modes, P. The resulting values are found ~5 times larger than the values resulting from a computation in which convective velocities and entropy fluctuations are obtained with a 1D solar envelope model built with the time-dependent, nonlocal Gough (1977) extension of the mixing length formulation for convection (GMLT). This difference is mainly due to the assumed mean anisotropy properties of the velocity field in the excitation region. The 3D simulation suggests much larger horizontal velocities compared to vertical ones than in the 1D GMLT solar model. The values of P obtained with the 3D simulation constraints however are still too small compared with the values inferred from solar observations. Improvements in the description of the turbulent kinetic energy spectrum and its depth dependence yield further increased theoretical values of P which bring them closer to the observations. It is also found that the source of excitation arising from the advection of the turbulent fluctuations of entropy by the turbulent movements contributes ~ 65-75 % to the excitation and therefore remains dominant over the Reynolds stress contribution. The derived theoretical values of P obtained with the 3D simulation constraints remain smaller by a factor ~3 compared with the solar observations. This shows that the stochastic excitation model still needs to be improved.Comment: 11 pages, 9 figures, accepted for publication in A&

    Comparison of the prognostic value of measures of the tumor inflammatory cell infiltrate and tumor-associated stroma in patients with primary operable colorectal cancer

    Get PDF
    The aim of the present study was to compare the clinical utility of two measures of the inflammatory cell infiltrate - a H&E-based assessment of the generalised inflammatory cell infiltrate (the Klintrup-Mäkinen (KM) grade), and an immunohistochemistry-based assessment of combined CD3+ and CD8+ T-cell density (the “Immunoscore”), in conjunction with assessment of the tumor stroma percentage (TSP) in patients undergoing resection of stage I-III colorectal cancer (CRC). 246 patients were identified from a prospectively maintained database of CRC resections in a single surgical unit. Assessment of KM grade and TSP was performed using full H&E sections. CD3+ and CD8+ T-cell density was assessed on full sections and the Immunoscore calculated. KM grade and Immunoscore were strongly associated (P<0.001). KM grade stratified cancer-specific survival (CSS) from 88% to 66% (P=0.002) and Immunoscore from 93% to 61% (P<0.001). Immunoscore further stratified survival of patients independent of KM grade from 94% (high KM, Im4) to 60% (low KM, Im0/1). Furthermore, TSP stratified survival of patients with a weak inflammatory cell infiltrate (low KM: from 75% to 47%; Im0/1: from 71% to 38%, both P<0.001) but not those with a strong inflammatory infiltrate. On multivariate analysis, only Immunoscore (HR 0.44, P<0.001) and TSP (HR 2.04, P<0.001) were independently associated with CSS. These results suggest that the prognostic value of an immunohistochemistry-based assessment of the inflammatory cell infiltrate is superior to H&E-based assessment in patients undergoing resection of stage I-III CRC. Furthermore, assessment of the tumor-associated stroma, using TSP, further improves prediction of outcome

    Articulation therapy for children with cleft palate using visual articulatory models and ultrasound biofeedback

    Get PDF
    Visual biofeedback tools, such as Electropalatography (EPG), are recommended for assessing and treating speech sound disorders (SSDs) associated with Cleft Palate (CP). However, EPG is not suitable for all clients, due to dependencies on stable dentition and timing of palatal repair. Ultrasound is becoming increasingly popular for its use in treating SSDs, with no reports on its dependency on structure of the vocal tract. However its clinical application in the CP population remains to be tested. We compared Visual Articulatory Models (VAMs) with Ultrasound for the treatment of SSDs in two children with repaired submucous CP. Both children received two blocks of therapy each with eight sessions, with the first block using VAMs and the second using ultrasound. Results showed that both children improved overall, with more improvement found in the first block of therapy using VAMs

    Open issues in probing interiors of solar-like oscillating main sequence stars: 2. Diversity in the HR diagram

    Full text link
    We review some major open issues in the current modelling of low and intermediate mass, main sequence stars based on seismological studies. The solar case was discussed in a companion paper, here several issues specific to other stars than the Sun are illustrated with a few stars observed with CoRoT and expectations from Kepler data.Comment: GONG 2010 - SoHO 24, A new era of seismology of the Sun and solar-like stars, To be published in the Journal of Physics: Conference Series (JPCS

    No evidence of a significant role for CTLA-4 in multiple sclerosis

    Get PDF
    Variation in the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) gene plays a significant role in determining susceptibility to autoimmune thyroid disease and type 1 diabetes. Its role in multiple sclerosis is more controversial. In order to explore this logical candidate more thoroughly, we genotyped 771 multiple sclerosis trio families from the United Kingdom for the 3? untranslated region variable number tandem repeat, the CT60 single nucleotide polymorphism (SNP) and five haplotype-tagging SNPs. No individual marker or common haplotype showed evidence of association with disease. These data suggest that any effect of CTLA-4 on multiple sclerosis susceptibility is likely to be very small

    Constraining mixing processes in stellar cores using asteroseismology. Impact of semiconvection in low-mass stars

    Full text link
    The overall evolution of low-mass stars is heavily influenced by the processes occurring in the stellar interior. In particular, mixing processes in convectively unstable zones and overshooting regions affect the resulting observables and main sequence lifetime. We study the effects of different convective boundary definitions and mixing prescriptions in convective cores of low-mass stars, to discriminate the existence, size, and evolutionary stage of the central mixed zone by means of asteroseismology. We implemented the Ledoux criterion for convection in our stellar evolution code, together with a time-dependent diffusive approach for mixing of elements when semiconvective zones are present. We compared models with masses ranging from 1 M* to 2 M* computed with two different criteria for convective boundary definition and including different mixing prescriptions within and beyond the formal limits of the convective regions. Using calculations of adiabatic oscillations frequencies for a large set of models, we developed an asteroseismic diagnosis using only l=0 and l=1 modes based on the ratios of small to large separations r01 and r10 defined by Roxburgh & Vorontsov (2003). These variables are almost linear in the expected observable frequency range, and we show that their slope depends simultaneously on the central hydrogen content, the extent of the convective core, and the amplitude of the sound-speed discontinuity at the core boundary. By considering about 25 modes and an accuracy in the frequency determinations as expected from the CoRoT and Kepler missions, the technique we propose allows us to detect the presence of a convective core and to discriminate the different sizes of the homogeneously mixed central region without the need of a strong a priori for the stellar mass.Comment: 13 pages, 9 figures, accepted for publication in A&

    Abnormal long wave dispersion phenomena in a slightly compressible elastic plate with non-classical boundary conditions

    Get PDF
    A two parameter asymptotic analysis is employed to investigate some unusual long wave dispersion phenomena in respect of symmetric motion in a nearly incompressible elastic plate. The plate is not subject to the usual classical traction free boundary conditions, but rather has its faces fixed, precluding any displacement on the boundary. The abnormal long wave behaviour results in the derivation of non-local approximations for symmetric motion, giving frequency as a function of wave number. Motivated by these approximations, the asymptotic forms of displacement components established and long wave asymptotic integration is carried out
    corecore