680 research outputs found

    String Solitons

    Get PDF
    We review the status of solitons in superstring theory, with a view to understanding the strong coupling regime. These {\it solitonic} solutions are non-singular field configurations which solve the empty-space low-energy field equations (generalized, whenever possible, to all orders in α\alpha'), carry a non-vanishing topological "magnetic" charge and are stabilized by a topological conservation law. They are compared and contrasted with the {\it elementary} solutions which are singular solutions of the field equations with a σ\sigma-model source term and carry a non-vanishing Noether "electric" charge. In both cases, the solutions of most interest are those which preserve half the spacetime supersymmetries and saturate a Bogomol'nyi bound. They typically arise as the extreme mass=charge limit of more general two-parameter solutions with event horizons. We also describe the theory {\it dual} to the fundamental string for which the roles of elementary and soliton solutions are interchanged. In ten spacetime dimensions, this dual theory is a superfivebrane and this gives rise to a string/fivebrane duality conjecture according to which the fivebrane may be regarded as fundamental in its own right, with the strongly coupled string corresponding to the weakly coupled fivebrane and vice-versa. After compactification to four spacetime dimensions, the fivebrane appears as a magnetic monopole or a dual string according as it wraps around five or four of the compactified dimensions. This gives rise to a four-dimensional string/string duality conjecture which subsumes a Montonen-Olive type duality in that the magnetic monopoles of the fundamental string correspond to the electric winding states of the dual string. This leads to a {\it duality of dualities} whereby under string/string duality the the strong/weak coupling SS-duality trades places with the minimum/maximum length TT-duality. Since these magnetic monopoles are extreme black holes, a prediction of SS-duality is that the corresponding electric massive states of the fundamental string are also extreme black holes.Comment: 150 pages, TeX, submitted to Physics Reports, 3 figures available on reques

    Supersymmetry and Dual String Solitons

    Get PDF
    We present new classes of string-like soliton solutions in (N=1N=1; D=10D=10), (N=2N=2; D=6D=6) and (N=4N=4; D=4D=4) heterotic string theory. Connections are made between the solution-generating subgroup of the TT-duality group of the compactification and the number of spacetime supersymmetries broken. Analogous solutions are also noted in (N=1,2N=1,2; D=4D=4) compactifications, where a different form of supersymmetry breaking arises.Comment: 13 pages, harvmac, (missing references added

    Veneziano Amplitude for Winding Strings

    Get PDF
    String configurations with nonzero winding number describe soliton string states. We compute the Veneziano amplitude for the scattering of arbitrary winding states and show that in the large radius limit the strings always scatter trivially and with no change in the individual winding numbers of the strings. In this limit, then, these states scatter as true solitons.Comment: 7 page

    Large scale study of multiple-molecule queries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In ligand-based screening, as well as in other chemoinformatics applications, one seeks to effectively search large repositories of molecules in order to retrieve molecules that are similar typically to a single molecule lead. However, in some case, multiple molecules from the same family are available to seed the query and search for other members of the same family.</p> <p>Multiple-molecule query methods have been less studied than single-molecule query methods. Furthermore, the previous studies have relied on proprietary data and sometimes have not used proper cross-validation methods to assess the results. In contrast, here we develop and compare multiple-molecule query methods using several large publicly available data sets and background. We also create a framework based on a strict cross-validation protocol to allow unbiased benchmarking for direct comparison in future studies across several performance metrics.</p> <p>Results</p> <p>Fourteen different multiple-molecule query methods were defined and benchmarked using: (1) 41 publicly available data sets of related molecules with similar biological activity; and (2) publicly available background data sets consisting of up to 175,000 molecules randomly extracted from the ChemDB database and other sources. Eight of the fourteen methods were parameter free, and six of them fit one or two free parameters to the data using a careful cross-validation protocol. All the methods were assessed and compared for their ability to retrieve members of the same family against the background data set by using several performance metrics including the Area Under the Accumulation Curve (AUAC), Area Under the Curve (AUC), F1-measure, and BEDROC metrics.</p> <p>Consistent with the previous literature, the best parameter-free methods are the MAX-SIM and MIN-RANK methods, which score a molecule to a family by the maximum similarity, or minimum ranking, obtained across the family. One new parameterized method introduced in this study and two previously defined methods, the Exponential Tanimoto Discriminant (ETD), the Tanimoto Power Discriminant (TPD), and the Binary Kernel Discriminant (<b>BKD</b>), outperform most other methods but are more complex, requiring one or two parameters to be fit to the data.</p> <p>Conclusion</p> <p>Fourteen methods for multiple-molecule querying of chemical databases, including novel methods, (ETD) and (TPD), are validated using publicly available data sets, standard cross-validation protocols, and established metrics. The best results are obtained with ETD, TPD, BKD, MAX-SIM, and MIN-RANK. These results can be replicated and compared with the results of future studies using data freely downloadable from <url>http://cdb.ics.uci.edu/</url>.</p

    A Comment on String Solitons

    Full text link
    We derive an exact string-like soliton solution of D=10 heterotic string theory. The solution possesses SU(2)×SU(2)SU(2)\times SU(2) instanton structure in the eight-dimensional space transverse to the worldsheet of the soliton.Comment: 4 page

    Zn2+ differentially influences the neutralisation of heparins by HRG, fibrinogen, and fibronectin.

    Get PDF
    Funding: This research was funded by the British Heart Foundation, grant numbers PG/15/9/31270 and FS/15/42/3155.For coagulation to be initiated, anticoagulant glycosaminoglycans (GAGs) such as heparins need to be neutralised to allow fibrin clot formation. Platelet activation triggers the release of several proteins that bind GAGs, including histidine-rich glycoprotein (HRG), fibrinogen and fibronectin. Zn2+ ions are also released and have been shown to enhance binding of HRG to heparins of a high- molecular weight (HMWH), but not to those of low-molecular weight (LMWH). The effect of Zn2+ on fibrinogen and fibronectin binding to GAGs is unknown. Here, chromogenic assays were used to measure the anti-factor Xa and anti-thrombin activities of heparins of different molecular weights and to assess the effects of HRG, fibrinogen, fibronectin and Zn2+. Surface plasmon resonance was also used to examine the influence of Zn2+-on binding of fibrinogen to heparins of different molecular weights. Zn2+ had no effect on the neutralisation of anti-factor Xa (FXa) or anti-thrombin activities of heparin by fibronectin, whereas it enhanced neutralisation of unfractionated heparin (UFH) and HMWH by both fibrinogen and HRG. Zn2+ also increased neutralisation of the anti-FXa activity of LMWH by fibrinogen but not HRG. SPR showed that Zn2+ in-creased fibrinogen binding to both UFH and LMWH in a concentration-dependent manner. The presented results reveal that an increase in Zn2+ concentration has differential effects upon anti-coagulant GAG neutralisation by HRG and fibrinogen, with implications for modulating anti-coagulant activity in plasma.Publisher PDFPeer reviewe

    Studies on wound healing activity of some Euphorbia species on experimental rats

    Get PDF
    Background: Plants of Euphorbiaceae are used in folkloric medicines in variety of ailments and well known for chemical diversity of their isoprenoid constituents. This study was carried out to explore the preliminary wound healing potential of four Euphorbia species (E. consorbina 1, E. consorbina 2, E. inarticulata, E. balsamifera and E. schimperi).Materials and Methods: Excision wound surface of the animals were topically treated with ethyl acetate and methanol extracts of plants at a dose of 400 mg/kg body weight for twenty days. Povidone-iodine ointment was used as a reference drug. Wound contraction measurement and period of epithelialization were used to assess the effect of plants extracts on wound repairing.Results: The groups treated with methanol extracts of E. balsamifera and E. schimperi showed profound effects, high rate of wound contraction (100%) and decrease in epithelization period 19.00±0.40 and 18.50±0.64 respectively, followed by methanol extracts of E. consorbina 2, ethyl acetate extract of E. inarticulata and ethyl acetate extracts of E. consorbina 2 which showed significant (P &lt;0.001) wound contraction and decrease in epithelization period. Conversely ethyl acetate extract of E. consorbina 1, E. balsamifera and E. schimperi and methanol extract of E. Consorbina 1 and E. Inarticulata treated groups was not showing significant wound healing. Methanol extracts of E. balsamifera and E. schimperi were also tested for their safety margin and found safe up to dose of 2000mg/kg body weight.Conclusion: Topical application of methanol extracts of E. balsamifera and E. schimperi have potential wound healing activity which is identical with standard drug Povidone-iodine.Keywords: Wound healing, excision wounds, Euphorbia, extract
    corecore