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Abstract

We review the status of solitons in superstring theory, with a view to understanding

the strong coupling regime. These solitonic solutions are non-singular field configurations

which solve the empty-space low-energy field equations (generalized, whenever possible, to

all orders in α′), carry a non-vanishing topological “magnetic” charge and are stabilized

by a topological conservation law. They are compared and contrasted with the elementary

solutions which are singular solutions of the field equations with a σ-model source term

and carry a non-vanishing Noether “electric” charge. In both cases, the solutions of most

interest are those which preserve half the spacetime supersymmetries and saturate a Bo-

gomol’nyi bound. They typically arise as the extreme mass=charge limit of more general

two-parameter solutions with event horizons. We also describe the theory dual to the fun-

damental string for which the roles of elementary and soliton solutions are interchanged.

In ten spacetime dimensions, this dual theory is a superfivebrane and this gives rise to

a string/fivebrane duality conjecture according to which the fivebrane may be regarded

as fundamental in its own right, with the strongly coupled string corresponding to the

weakly coupled fivebrane and vice-versa. After compactification to four spacetime dimen-

sions, the fivebrane appears as a magnetic monopole or a dual string according as it wraps

around five or four of the compactified dimensions. This gives rise to a four-dimensional

string/string duality conjecture which subsumes a Montonen-Olive type duality in that the

magnetic monopoles of the fundamental string correspond to the electric winding states

of the dual string. This leads to a duality of dualities whereby under string/string duality

the strong/weak coupling S-duality trades places with the minimum/maximum length T -

duality. Since these magnetic monopoles are extreme black holes, a prediction of S-duality

is that the corresponding electric massive states of the fundamental string are also extreme

black holes. This is indeed the case.
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1. Introduction

1.1. Preliminaries

Solitons [1,2,3], sometimes called topological defects [4], are important in quantum

field theory for a variety of reasons. Their existence means that the full non-perturbative

theory may have a much richer structure than is apparent in perturbation theory. For

example, the electrically charged elementary particle spectrum may need to be augmented

by magnetically charged solitonic particles. The former carry a Noether charge following

from the equations of motion while the latter carry a topological charge associated with

the Bianchi identities. That these magnetic monopoles are intrinsically non-perturbative is

apparent from their mass formula which depends inversely on the coupling constant. The

spectrum might also contain dyons, particles carrying both electric and magnetic charge.

In four spacetime dimensions, extended solitonic objects, strings and domain walls, are

also possible. In modern parlance, they might be known as (d− 1)-branes with d = 1, 2, 3

where d is the dimension of the worldvolume swept out by the soliton. In this report we

shall use the word solitons to mean any such non-singular lumps of field energy which

solve the field equations, which have finite mass per unit (d − 1)-volume and which are

prevented from dissipating by some topological conservation law. Their existence, which

in some grand unified theories is actually mandatory, has far-reaching implications both

at the microscopic and cosmic scales [5].

However, it is now commonly believed that ordinary quantum field theory is inade-

quate for a unification of all the forces including gravity and that it must be supplanted by

superstring theory. If this is true then soliton solutions of string theory must be even more

important. Although the revival of the string idea is now ten years old, it is only recently

that much attention has been devoted to the subject of solitons. This interest has in part

been brought about by the realization that the really crucial questions of string theory:

“How does the string choose a vacuum state?”; “How does the string break supersymme-

try?”; “How does the string cope with the cosmological constant problem?” cannot be

answered within the framework of a weak coupling perturbation expansion. Consequently,

despite the enormous number of reviews on superstring theory, comparatively little has
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been written on bringing together this new wealth of information on its non-perturbative

sector and trying to make sense of it. The purpose of this Report is to do just that.

The current interest in string solitons has another, ostensibly different, origin. While

all the activity in superstring theory was going on a small but dedicated group of theorists

was asking a seemingly very different question: if we are going to replace 0-dimensional

point particles by 1-dimensional strings, why not 2-dimensional membranes or in general

(d − 1)-dimensional objects or “(d − 1)-branes”? Since superstrings can have D ≤ 10

spacetime dimensions, there is plenty of room for higher dimensional extended objects with

d < D. Progress in super (d− 1)-branes was hampered by the belief that κ-symmetry, so

crucial to Green-Schwarz superparticles (d = 1) [6] and superstrings (d = 2) [7], could not

be generalized to d > 2. The breakthrough came when Hughes et al. [8] showed that κ-

symmetry could, in fact, be generalized and proceeded to construct a threebrane displaying

an explicit D = 6, N = 1 spacetime supersymmetry and κ-invariance on the worldvolume.

Moreover, the motivation for this paper was precisely to find the superthreebrane as a

topological defect of a supersymmetric field theory in D = 6. The discovery of the other

supermembranes proceeded in the opposite direction. First of all, Bergshoeff et al. [9]

found corresponding Green-Schwarz actions for other values of d and D, in particular,

the eleven-dimensional supermembrane. We shall discuss this theory in section 4 and

show how to derive from it the Type IIA string in ten dimensions by a simultaneous

dimensional reduction of the worldvolume and the spacetime. Their method was to show

such Green-Schwarz super p-brane actions are possible whenever there is a closed (p+ 2)-

form in superspace. As described in section 1.2, the four “fundamental” super p-branes

are then given by p = 2 in D = 11, p = 5 in D = 10, p = 3 in D = 6 and p = 2 in

D = 4 [10]. Applying the above mentioned simultaneous reduction k times, we find four

sequences of (p − k)-branes in (D − k) dimensions, which include the well known Green-

Schwarz superstrings in D = 10, 6, 4 and 3. These four sequences, known as the octonionic

(O), quaternionic (H), complex (C) and real (R) sequences, make up the brane-scan of

section 1.2.

Of particular interest was the D = 10 fivebrane, whose Wess-Zumino term coupled

to a rank six antisymmetric tensor potential AMNPQRS just as the Wess-Zumino term

of the string coupled to a rank two potential BMN . Spacetime supersymmetry therefore

demanded that the fivebrane coupled to the 7-form field strength formulation of D = 10

supergravity [11] just as the string coupled to the 3-form version [12,13]. These dual

formulations of D = 10 supergravity have long been something of an enigma from the

2



point of view of superstrings. As field theories, each seems equally valid. In particular,

provided we couple them to E8 ×E8 or SO(32) super-Yang-Mills, then both are anomaly

free [14,15,16]. Since the 3-form version corresponds to the field theory limit of the heterotic

string, Duff conjectured [17] that there ought to exist a heterotic fivebrane which could be

viewed as a fundamental anomaly-free theory in its own right and whose field theory limit

corresponds to the dual 7-form version. We shall refer to this as the string/fivebrane duality

conjecture. One of the purposes of this Report will be to summarize the evidence in its

favor. At this stage, however, the solitonic element had not yet been introduced.

The next development came when Townsend [18] pointed out that not merely the

D = 6 threebrane but all the points on the H, C,R sequences correspond to topological

defects of some globally supersymmetric field theory which break half the spacetime super-

symmetries. This partial breaking of supersymmetry, already discussed in [8], is a key idea

and is intimately connected with the worldvolume κ-symmetry which allows one to gauge

away half of the fermionic degrees of freedom. He conjectured that the p-branes in the O
sequence would also admit such a solitonic interpretation within the context of supergrav-

ity. Another purpose of this Report will be to examine to what extent this conjecture is

true.

The first hint in this direction came from Dabholkar et al. [19], who presented a multi-

string solution which in D = 10 indeed breaks half the supersymmetries. They obtained

the solution by solving the low-energy 3-form supergravity equations of motion coupled

to a string σ-model source and demonstrated that it saturated a Bogomol’nyi bound and

satisfied an associated zero-force condition, these properties being intimately connected

with the existence of unbroken spacetime supersymmetry. The authors of [19] went on to

interpret these solutions as macroscopic fundamental string states and presented evidence

in favour of this conjecture. Since that time, further evidence has been obtained (e.g.

[20,21,22]) to support this identification. In section 2.1 we rederive this string solution

and point out the existence of the Bogomol’nyi bound between the ADM mass per unit

length and charge per unit length and discuss the zero-force condition which arises from

the preservation of half the spacetime supersymmetries.

However, this D = 10 string was clearly not the soliton anticipated by Townsend

because it described a singular configuration with a δ-function source at the string location.

Moreover, its charge per unit length e2 was an “electric” Noether charge associated with the

equation of motion of the antisymmetric tensor field rather than a “magnetic” topological

charge associated with the Bianchi identities. Consequently, in the current literature on
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the subject, this solution is now referred to as the “fundamental” or “elementary” string.

Similarly, the supermembrane solution of D = 11 supergravity found in [23] did not seem

to be solitonic either because it was also obtained by coupling to a membrane σ-model

source. †

The next major breakthrough for p-branes as solitons came with the paper of Stro-

minger [24], who showed that D = 10 supergravity coupled to super Yang-Mills (without

a σ-model source), which is the field theory limit of the heterotic string [25], admits as a

solution the heterotic fivebrane. In contrast to the elementary string, this fivebrane is a

genuine soliton, being everywhere nonsingular and carrying a topological magnetic charge

g6. A crucial part of the construction was a Yang-Mills instanton in the four directions

transverse to the fivebrane. He went on to suggest a complete strong/weak coupling duality

with the strongly coupled string corresponding to the weakly coupled fivebrane and vice-

versa, thus providing a solitonic interpretation of the string/fivebrane duality conjecture.

In this form, string/fivebrane duality is in a certain sense an analog of the Montonen-Olive

conjecture discussed in section 1.3, according to which the magnetic monopole states of

four-dimensional spontaeously broken supersymmetric Yang-Mills theories may be viewed

from a dual perspective as fundamental in their own right and in which the roles of the

elementary and solitonic states are interchanged.

This strong/weak coupling was subsequently confirmed from the point of view of

Poincaré duality in [26]. There it was shown that the just as the string loop expansion

parameter is given by g2 = eφ0 , where φ0 is the dilaton vev, so the analogous fivebrane

parameter is given by g6 = e−φ0/3 and hence that

g6 = g
−1/3
2 . (1.1)

The same paper also established a Dirac quantization rule

κ2T2T6 = nπ, n = integer (1.2)

relating the fivebrane tension T6 to the string tension T2, which followed from the corre-

sponding rule for the electric and magnetic charges generalized to extended objects [27,28]

e2g6 = 2nπ.

† Curiously, however, as discussed in section 3.7, the curvature computed from its σ-

model metric is finite at the location of the source, in contrast to the case of the elementary

string.
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For the purposes of generalizing the Dirac quantization rule for extended objects, it is

instructive to write the Maxwell’s equations in terms of the electromagnetic tensor FMN

as

∂[MFNP ] = 0, (1.3)

∂[M
∗FNP ] = ∗JMNP , (1.4)

where
∗FMN =

1

2
εMNOPFOP ,

∗JMNO = εMNOP JP , (1.5)

and

JM = (ρ, j), F 0m = Em, Fmn = ǫmnlBl, (1.6)

and in the absence of the monopole, the field strength FMN can be written in terms of the

four-vector potential AM = (φ,A) as

FMN ≡ 2∂[MAN ] = ∂MAN − ∂NAM . (1.7)

The asymmetry between the equation for F and that for ∗F corresponds physically to

the statement that there are no magnetic monopoles. If we want to restore the symmetry

of the source-free Maxwell’s equations by introducing magnetic monopoles then we must

replace (1.7) by

FMN = ∂MAN − ∂NAM + ωMN , (1.8)

so that

∂[MFNP ] = XMNP , (1.9)

with

XMNP = ∂[MωNP ], (1.10)

and hence

∂[MXNPQ] ≡ 0. (1.11)

The monopole may be of the Dirac type where X is singular

X123 = gδ3(y), (1.12)

in analogy with the elementary electric charge

∗J123 = eδ3(y), (1.13)

5



or the source may be smeared out so as to be regular at the origin as in the ’t Hooft-

Polyakov monopole. In both cases, we have

e ≡
∫

S2

∗F =

∫

M3

∗J, (1.14)

g ≡
∫

S2

F =

∫

M3

X. (1.15)

In the language of (1.4), (1.8) and (1.9), the electric charge is conserved by virtue of the

field equations and hence corresponds to a Noether charge, whereas the magnetic charge

is identically conserved and corresponds to a topological charge.

Just as a charged particle couples to an Abelian vector potential AM displays a gauge

invariance

AM → AM + ∂MΛ (1.16)

and has a gauge invariant field strength

FMN = 2∂[MAN ] ≡ ∂MAN − ∂NAM , (1.17)

a string couples to a rank-2 antisymmetric tensor potential AMN = −ANM with a gauge

invariance

AMN → AMN + ∂[MΛN ], (1.18)

and field strength

FMNP = 3∂[MANP ]. (1.19)

In general, a (d− 1)-brane couples to a d-form AM1M2···Md
with

AM1M2···Md
→ AM1M2···Md

+ ∂[M1
ΛM2···Md], (1.20)

and

FM1M2···Md+1
= (d+ 1)∂[M1

AM2···Md+1]. (1.21)

In the language of differential forms we may write for arbitrary d and D

Ad → Ad + dΛd−1, (1.22)

and

Fd+1 = dAd, (1.23)

6



from which the Bianchi identity

dFd+1 ≡ 0 (1.24)

follows immediately. In the absence of other interactions, the equation of motion for the

d-form potential is

d∗FD−d−1 = ∗JD−d, (1.25)

where the source J is a d-form. Here we have introduced the Hodge dual operation ∗ which

converts a d-form into a (D − d)-form, e.g.

(∗J)M1M2···MD−d ≡ 1

d!
εM1M2···MDJMD−d+1···MD

, (1.26)

where εM1···MD is the D-dimensional alternating symbol with ε01···D−1 = 1.

Just as the usual Maxwell’s equations, (1.23), (1.24) and (1.25) imply the presence of

an “electric” charge, i.e. a (d− 1)-brane, but no “magnetic” charge, i.e. no (D − d− 3)-

brane. To restore the duality symmetry by introducing a (D−d−3)-brane we must modify

(1.23) to

Fd+1 = dAd + ωd+1, (1.27)

so that the Bianchi identity (1.24) becomes

dFd+1 = Xd+2, (1.28)

with

Xd+2 = dωd+1. (1.29)

Once again X may be singular

X123···d+2 = gD−d−2δ
d+2(y), (1.30)

or may be smeared out so as to be regular at the origin. We then have

ed =

∫

SD−d−1

∗FD−d−1 =

∫

MD−d

∗JD−d, (1.31)

gD−d−2 =

∫

Sd+1

Fd+1 =

∫

Md+2

Xd+2. (1.32)
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The Dirac quantization condition is again obtained by using the generalization of either

the Dirac string [28] or Wu-Yang construction [27] as

edgD−d−2

4π
=

1

2
(n = integer). (1.33)

Note that, ed and gD−d−2 are not in general dimensionless but rather

[ed] = −1

2
(D − 2d− 2), [gD−2d−2] =

1

2
(D − 2d− 2). (1.34)

They do become dimensionless when

D = 2(d+ 1), (1.35)

of which the point particle (d = 1) in D = 4 is the most familiar special case.

In keeping with the viewpoint that the fivebrane may be regarded as fundamental

in its own right, Duff and Lu [29] then constructed the elementary fivebrane solution by

coupling the 7-form version of supergravity to a fivebrane σ-model source in analogy with

the elementary string. This carries an electric charge ẽ6. String/fivebrane duality then

suggested that by coupling the 7-form version of supergravity to super Yang-Mills (without

a σ-model source), one ought to find a nonsingular heterotic string soliton carrying a

topological magnetic charge g̃2. Here one would expect an eight-dimensional Yang-Mills

instanton in the eight directions transverse to the string. This was indeed the case [30], but

scaling arguments required an unconventional Yang-Mills Lagrangian, quartic in the field

strengths, which, however, is only to be expected in a fivebrane loop expansion [30,31].

Somewhat surprisingly, the elementary fivebrane, as pointed out by Callan, Harvey

and Strominger [32,33], could also be regarded as a soliton when viewed from the dual

perspective, with g6 = ẽ6. In other words, it provides a nonsingular solution of the

source-free 3-form equations even without the presence of Yang-Mills fields. By the same

token, when viewed from the dual perspective, the elementary string provides a nonsingular

solution of the source-free 7-form equations with g̃2 = e2 [34].

1.2. Supersymmetric extended objects as solitons: the brane-scan

As the p-brane moves through spacetime, its trajectory is described by the functions

XM (ξ) where XM are the spacetime coordinates (M = 0, 1, . . . , D − 1) and ξi are the
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worldvolume coordinates (i = 0, 1, . . . , d− 1). It is often convenient to make the so-called

“static gauge choice” by making the D = d+ (D − d) split

XM (ξ) = (Xµ(ξ), Ym(ξ)), (1.36)

where µ = 0, 1, . . . , d− 1 and m = d, . . . , D − 1, and then setting

Xµ(ξ) = ξµ. (1.37)

Thus the only physical worldvolume degrees of freedom are given by the (D − d) Y m(ξ).

So the number of on-shell bosonic degrees of freedom is

NB = D − d. (1.38)

To describe the super p-brane we augment theD bosonic coordinatesXM (ξ) with anti-

commuting fermionic coordinates θα(ξ). Depending onD, this spinor could be Dirac, Weyl,

Majorana or Majorana-Weyl. The fermionic κ-symmetry means that half of the spinor de-

grees of freedom are redundant and may be eliminated by a physical gauge choice. The net

result is that the theory exhibits a d-dimensional worldvolume supersymmetry where the

number of fermionic generators is exactly half of the generators in the original spacetime

supersymmetry. This partial breaking of supersymmetry is a key idea. Let M be the num-

ber of real components of the minimal spinor and N the number of supersymmetries in D

spacetime dimensions and let m and n be the corresponding quantities in d worldvolume

dimensions. Let us first consider d > 2. Since κ-symmetry always halves the number of

fermionic degrees of freedom and going on-shell halves it again, the number of on-shell

fermionic degrees of freedom is

NF =
1

2
mn =

1

4
MN. (1.39)

Worldvolume supersymmetry demands NB = NF and hence

D − d =
1

2
mn =

1

4
MN. (1.40)

A list of dimensions, number of real components of the minimal spinor and possible super-

symmetries is given in Table 1, from which we see that there are only 8 solutions to (1.40)

all with N = 1, as shown in Fig. 1. We note in particular that Dmax = 11 since M ≥ 64

for D ≥ 12 and hence (1.40) cannot be satisfied. Similarly dmax = 6 since m ≥ 16 for
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d ≥ 7. The case d = 2 is special because of the ability to treat left and right moving modes

independently. If we require the sum of both left and right moving bosons and fermions to

be equal, then we again find the condition (1.40). This provides a further 4 solutions all

with N = 2, corresponding to Type II superstrings in D = 3, 4, 6 and 10 (or 8 solutions in

all if we treat Type IIA and Type IIB separately. The gauge-fixed Type IIB superstring

will display (8, 8) supersymmetry on the worldsheet and the Type IIA will display (16, 0),

the opposite [32,33] of what one might naively expect). If we require only left (or right)

matching, then (1.40) is replaced by

D − 2 = n =
1

2
MN, (1.41)

which allows another 4 solutions in D = 3, 4, 6 and 10, all with N = 1. The gauge-fixed

theory will display (8,0) worldsheet supersymmetry. The heterotic string falls into this

category. The results are shown in Fig. 1 [10].

An equivalent way to arrive at the above conclusions is to list all scalar supermultiplets

in d ≥ 2 dimensions and to interpret the dimension of the target space, D, by

D − d = number of scalars. (1.42)

A useful reference is [35], which provides an exhaustive classification of all unitary rep-

resentations of supersymmetry with maximum spin 2. In particular, we can understand

dmax = 6 from this point of view since this is the upper limit for scalar supermultiplets.

In summary, according to the above classification, Type II p-branes do not exist for p > 1.

We shall return to this issue, however, in section 4.

Dimension Minimal Spinor Supersymmetry

(D or d) (M or m) (N or n)

11 32 1

10 16 2, 1

9 16 2, 1

8 16 2, 1

7 16 2, 1

6 8 4, 3, 2, 1

5 8 4, 3, 2, 1

4 4 8, . . ., 1

3 2 16, . . ., 1

2 1 32, . . ., 1

Table 1. Minimal spinor components and supersymmetries.
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1.3. The Montonen-Olive conjecture

Following Callan, Harvey and Strominger [36], we briefly review some general aspects

of solitons. Two important features of solitons are the following [3]:

1) Most solitons are non-perturbative, i.e. they are solutions to nonlinear field equa-

tions which cannot be found by perturbation of the linearized field equations. Another

non-perturbative feature is the fact that the mass per unit p-volume is inversely propor-

tional to some power of a dimensionless coupling constant, so that the weak-coupling

perturbative limit corresponds to the strong-coupling limit for the solitons. Since the clas-

sical solutions are non-perturbative, the quantum effects obtained from soliton interactions

are also non-perturbative, and vanish to all orders in perturbation theory.

2) Most solitons are characterized by a conserved topological index which after quan-

tization becomes a conserved quantum number. This in contrast to the conserved Noether

charge associated with a continuous symmetry of the lagrangian.

In addition, soliton solutions typically depend on a finite number of parameters called

moduli which act as coordinates on the moduli space of soliton solutions of fixed topological

charge.

The simplest example of a soliton with these properties is the “kink” solution in 1+1

spacetime dimensions. The solution to the Lagrangian

L = −1
2∂µφ∂

µφ− U(φ), (1.43)

with potential U(φ) = λ(φ2 − m2/λ)2/4 and dimensionless coupling g ≡ λ/m2 has con-

served topological charge

Q =

√
g

2
(φ(+∞) − φ(−∞)). (1.44)

Q = ±1 for a kink (anti-kink) in which φ varies from the minimum of U at φ = ∓1/
√
g at

x = −∞ to the minimum at φ = ±1/
√
g at x = +∞. The energy (rest mass) of the kink

is given by

E =

∫
dx 1

2 (φ′)2 + U(φ) =
2
√

2

3

m

g
, (1.45)

so that the kink mass is proportional to 1/g, and the solution is non-perturbative. It is

straightforward to use the collective coordinates method [3] to separate out explicitly the

dependence on the zero modes and to be left with a well defined perturbation theory for

the non-zero modes.
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A supersymmetric version of the kink solution has Lagrangian

L = −1
2
(∂µφ)2 + 1

2
ψ̄iγµ∂µψ − 1

2
V 2(φ) − 1

2
V ′(φ)ψ̄ψ, (1.46)

where ψ is a Majorana fermion and V = λ(φ2−a2). This theory has two chiral supercharges

given by

Q± =

∫
dx(φ̇± φ′)ψ± ∓ V (φ)ψ∓, (1.47)

where ψ± are the left- and right-handed components of ψ. The corresponding supersym-

metry algebra is given by [37]

Q2
+ = P+, Q2

− = P−, {Q+, Q−} = T, (1.48)

with P± = P0 ± P1, and where the central term T is esssentially the topological charge.

The relation

P+ + P− = (Q+ +Q−)2 − T = (Q+ −Q−)2 + T (1.49)

implies a Bogomolnyi bound, M ≥ T/2, where M is the rest mass. This bound is saturated

precisely for those states |s〉 for which (Q+±Q−)|s〉 = 0, i.e. for states annihilated by some

combination of the supersymmetry charges. In fact, demanding unbroken supersymmetry

is equivalent to solving the “square root” of the equations of motion, and the fact that the

kink solution is annihilated by one combination of the supercharges implies saturation of

the Bogomolnyi bound. The other combination of supercharges does not annihilate the

kink state but instead produces a fermion zero mode in the kink background. This follows

from the fact that a supersymmetry variation of a solution to the bosonic equations of

motion if it is nonzero produces a solution to the fermionic equations of motion in the

bosonic background.

The property that half of the supercharges annihilate the classical solution leading

to saturation of a Bogomolnyi bound, while the other half acting on the soliton produce

fermion zero modes in the soliton background is found in most known examples of solitons

in supersymmetric theories. As a result, searching for configurations which preserve some

of the supercharges provides a shortcut to solving the full equations of motion since the

resulting equations are typically first order as compared to the second order equations of

motion. We will find this to be the case for the string soliton solutions discussed in this

Report.
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We now turn to the magnetic monopole solution in Yang-Mills theory. The action

for a Yang-Mills Higgs theory with gauge group SU(2) and a Higgs field Φ in the adjoint

representation is given by

S =

∫
d4x
(
− 1

4
TrFµνF

µν − 1
2TrD

µΦDµΦ − V (Φ)
)
, (1.50)

where V has a minimum at 〈TrΦ2〉 = v2 which breaks SU(2) down to U(1). For a static

configuration the energy is given by

E =

∫
d3xTr(Bi ±DiΦ)2 +

∫
d3xV (Φ) + 4πv|QM |, (1.51)

where v is the asymptotic vacuum expectation value of Φ. The energy thus satisfies a

Bogomolnyi bound

E ≥ 4πv|QM |, (1.52)

where

QM =

∫
B · dS (1.53)

is the magnetic charge and B is the asymptotic value of the gauge invariant U(1) field

strength. The magnetic charge QM is also related through the equations of motion to the

element of π2(SU(2)/U(1)) = Z which labels the topological charge carried by the Higgs

field configuration. The Bogomolnyi bound is saturated if V (φ) ≡ 0 and Bi = ±DiΦ,

which can be integrated to give explicit monopole solutions. The charge one solution was

found in [38]; multi-monopole solutions are discussed in [39]. The universal formula for

the classical mass of the particles of the theory is given by

M2 = (4π)2v2(Q2
E +Q2

M ), (1.54)

where QE and QM are the electric and magnetic charges of the particle respectively. For

monopoles (1.54) is simply the saturation of the Bogomolnyi bound. For massive gauge

bosons, it is just the usual relation between the gauge boson mass and the Higgs vacuum

expectation value.

The zero potential limit implies that the static force between two monopoles of like

charge or between two gauge bosons of like charge vanishes. This is due to a cancellation

between a repulsion due to photon (vector) exchange and an attraction due to massless

Higgs boson (scalar) exchange [40]. This type of “zero-force condition” holds for all multi-

soliton solutions we consider in this Report.
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Based on ideas of [41], Montonen and Olive [42], conjectured the existence of a “dual”

formulation of gauge theory in which the roles of gauge bosons and magnetic monopoles

are exchanged. An example of this type of duality in 1 + 1 spacetime dimensions is the

the Thirring model – sine-Gordon duality, in which topological and Noether charges are

exchanged.

In 3 +1 dimensions, however, monopoles have spin zero while gauge bosons have spin

one, and the mass formula is probably not exact when quantum corrections are included, as

the vanishing of the potential is not natural quantum mechanically. Embedding the theory

in N = 2 super Yang-Mills theory solves this problem, since then the charges QE and QM

appear as central charges in the supersymmetry algebra as in the kink solution and the mass

formula (1.54) is exact for supersymmetric states [37]. However, in N = 2 the monopole

states fill out a matter supermultiplet consisting of spin zero and spin one-half states. In

order to construct monopoles with spin one it is necessary to extend the supersymmetry to

N = 4, the maximal allowable global supersymmetry in 3+1 dimensions. This theory has a

number of remarkable features. First, the structure of the fermion zero modes is such that

the monopole supermultiplet now coincides with the gauge supermultiplet and includes

states of spin 1, 1/2, and 0 [43]. Second, the scalar potential has exact flat directions due

to supersymmetry and again the mass formula is exact. Finally, this theory is finite with

vanishing beta-function, so that a duality which relates g → 1/g can make sense quantum

mechanically at all scales. Thus in this special theory all of the simple objections to the

existence of the sort of duality suggested by Montonen and Olive disappear. Of course this

is a far cry from showing that such a duality actually holds, but the evidence is suggestive

enough that the idea is well worth pursuing.

Finally, the Montonen-Olive conjecture for more general gauge groups says that the

dual gauge group should have a weight lattice dual to the weight lattice of the original

group. It is tempting to speculate [26] that this is related to ten-dimensional heterotic

string theory, where the gauge groups SO(32)/Z2 and E8 × E8 with self-dual lattices are

singled out by anomaly cancellation.
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2. Strings and fivebranes in D=10

2.1. The elementary string

We begin by recalling the elementary string solution of [19]. We want to find a vacuum-

like supersymmetric configuration with D = 2 super-Poincare symmetry from the 3-form

version of D = 10, N = 1 supergravity theory. As usual, the fermionic fields should vanish

for this configuration. We start by making an ansatz for the D = 10 metric gMN , 2-form

BMN and dilaton φ (M = 0, 1, · · · , 9) corresponding to the most general eight-two split

invariant under P2 × SO(8), where P2 is the D = 2 Poincare group. We split the indices

xM = (xµ, ym), (2.1)

where µ = 0, 1 and m = 2, · · · , 9, and write the line element as

ds2 = e2Aηµνdx
µdxν + e2Bδmndy

mdyn, (2.2)

and the two-form gauge field as

B01 = −eC . (2.3)

All other components of BMN and all components of the gravitino ψM and dilatino λ are

set zero. P2 invariance requires that the arbitrary functions A,B and C depend only on

ym; SO(8) invariance then requires that this dependence be only through y =
√
δmnymyn.

Similarly, our ansatz for the dilaton is

φ = φ(y). (2.4)

As we shall now show, the four arbitrary functions A,B,C, and φ are reduced to

one by the requirement that the field configurations (2.2), (2.3) and (2.4) preserve some

unbroken supersymmetry. In other words, there must exist Killing spinors ε satisfying [19]

δψM = DMε+
1

96
e−φ/2

(
ΓM

NPQ − 9 δM
NΓPQ

)
HNPQ ε = 0, (2.5)
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δλ = − 1

2
√

2
ΓM∂Mφε+

1

24
√

2
e−φ/2 ΓMNPHMNP ε = 0, (2.6)

where

HMNP = 3∂[MANP ]. (2.7)

Here ΓA are the D = 10 Dirac matrices satisfying

{ΓA,ΓB} = 2ηAB. (2.8)

A,B refer to the D = 10 tangent space, ηAB = (−,+, · · · ,+), and

ΓAB···C = Γ[AΓB···ΓC], (2.9)

thus ΓAB = 1
2 (ΓAΓB − ΓBΓA), etc. The Γ’s with world-indices P,Q,R, · · · in (2.5) and

(2.6) have been converted using vielbeins eM
A. We make an eight-two split

ΓA = (γα ⊗ 1, γ3 ⊗ Σa), (2.10)

where γα and Σa are the D = 2 and D = 8 Dirac matrices, respectively. We also define

γ3 = γ0γ1, (2.11)

so that γ2
3 = 1 and

Γ9 = Σ2Σ3 · · ·Σ9, (2.12)

so that Γ2
9 = 1. The most general spinor consistent with P2 × SO(8) invariance takes the

form

ε(x, y) = ǫ⊗ η, (2.13)

where ǫ is a spinor of SO(1, 1) which may be further decomposed into chiral eigenstates

via the projection operators (1 ± γ3) and η is an SO(8) spinor which may further be

decomposed into chiral eigenstates via the projection operators (1±Γ9). The N = 1, D =

10 supersymmetry parameter is, however, subject to the ten-dimensional chirality condition

Γ11 ε = ε, (2.14)

where Γ11 = γ3 ⊗ Γ9 and so the D = 2 and D = 8 chiralities are correlated.

Substituting the ansatz (2.2), (2.3) and (2.4) into (2.5) and (2.6) leads to the solution

[19]

ε = e3φ/8ǫ0 ⊗ η0, (2.15)
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where ǫ0 and η0 are constant spinors satisfying

(1 − γ3)ǫ0 = 0, (1 − Γ9)η0 = 0, (2.16)

and where

A =
3φ

4
+ cA,

B = −φ
4

+ cB ,

C = 2φ+ 2cA,

(2.17)

where cA and cB are constants. If we insist that the metric is asymptotically Minkowskian,

then

cA = − 3φ0

4
, cB =

φ0

4
, (2.18)

where φ0 is the value of φ at infinity i.e. the dilaton vev φ0 = < φ >. The condition (2.16)

means that one half of the supersymmetries are broken.

At this stage the four unknown functions A, B, C and φ have been reduced to one

by supersymmetry. To determine φ, we must substitute the ansatz into the field equations

which follow from the action I10(string) +S2 where I10(string) is the bosonic sector of the

3-form version of D = 10, N = 1 supergravity given by

I10(string) =
1

2κ2

∫
d10x

√−g
(
R − 1

2
(∂φ)2 − 1

2 · 3!
e−φH2

)
, (2.19)

and S2 is the string σ-model action. In (2.5), (2.6) and (2.19) we have employed the

canonical choice of metric for which the gravitational action is the conventional Einstein-

Hilbert action. This metric is related to the metric appearing naturally in the string

σ-model by

gMN (string σ−model) = eφ/2gMN (canonical), (2.20)

which will be derived in the section 2.3. In canonical variables, therefore, the string σ-

model action is given by

S2 = −T2

∫
d2ξ

(
1

2

√−γ γij∂iX
M∂jX

NgMN eφ/2 − 2
√−γ

+
1

2!
εij∂iX

M∂jX
NBMN

)
.

(2.21)
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We have denoted the string tension by T2. The supergravity field equations are

RMN − 1

2
gMNR − 1

2

(
∂Mφ ∂Nφ− 1

2
gMN (∂φ)2

)

− 1

2 · 2!

(
HM

PQH
NPQ − 1

6
gMNH2

)
e−φ

= κ2TMN (string),

(2.22)

where

TMN (string) = −T2

∫
d2ξ

√
−γ γij∂iX

M∂jX
Neφ/2 δ10(x−X)√−g , (2.23)

∂M (
√−g e−φHMNP )

= 2κ2T2

∫
d2ξ εij∂iX

N∂jX
P δ10(x−X),

(2.24)

φ+
1

2 · 3!
e−φH2 =

κ2T2

2

∫
d6ξ

√
−γ γij∂iX

M∂jX
NgMNe

φ/2 δ
10(x−X)√−g . (2.25)

Furthermore, the string field equations are

∂i(
√−γ γij∂jX

NgMN eφ/2) − 1

2

√−γ γij∂iX
N∂jX

P∂M (gNP eφ/2)

− 1

2
εij∂iX

N∂jX
PHMNP = 0,

(2.26)

and

γij = ∂iX
M∂jX

NgMNe
φ/2. (2.27)

To solve these coupled supergravity-string equations we make the static gauge choice

Xµ = ξµ, µ = 0, 1 (2.28)

and the ansatz

Xm = Ym = constant, m = 2, ..., 9. (2.29)

As an example, let us now substitute (2.17), (2.28) and (2.29) into the 2-form equation

(2.24). We find

δmn∂m∂ne
−2φ = −2κ2T2e

−φ0/2δ8(y), (2.30)

and hence

e−2φ = e−2φ0

(
1 +

k2

y6

)
, (2.31)
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where the constant k2 is given by

k2 ≡ κ2T2

3Ω7
e3φ0/2, (2.32)

and Ωn is the volume of the unit n-sphere Sn. One may verify that all the field equations

(2.22) to (2.27) are reduced to a single equation (2.30) by using (2.18), (2.28), (2.29)

and the expressions for the Ricci tensor RMN and Ricci scalar R in terms of A and B.

For future reference, we shall compute these for arbitrary worldvolume dimension d and

spacetime dimension D. The ansatz is

ds2 = e2Aηµνdx
µdxν + e2Bδmndy

mdyn, (2.33)

where µ = 0, 1, · · · , d− 1;m = d, d+ 1, · · · , D − 1 and A = A(y), B = B(y). For the above

metric, we have

Rµν = −ηµνδ
mne2(A−B)

(
∂m∂nA+ d∂mA∂nA+ d̃∂mA∂nB

)
, (2.34)

Rmn = − d̃∂m∂nB − δmnδ
kl∂k∂lB − d∂m∂nA

+ d

(
∂mA∂nB + ∂nA∂mB − δmnδ

kl∂kA∂lB

)
− d∂mA∂nB

+ d̃∂mB∂nB − d̃δmnδ
kl∂kB∂lB,

(2.35)

R = e−2B

[
− 2dδmn∂m∂nA− d(d+ 1)δmn∂mA∂nA

− 2dd̃δmn∂mA∂nB

− 2(d̃+ 1)δmn∂m∂nB − d̃(d̃+ 1)δmn∂mB∂nB

]
,

(2.36)

where d̃ ≡ D − d− 2.

Having established that the supergravity configuration preserves half the supersymme-

tries, we must also verify that the string configuration (2.28) and (2.29) also preserve these

supersymmetries. As discussed in [44], the criterion is that in addition to the existence of

Killing spinors satisfying (2.5) and (2.6) we must also have

(1 − Γ)ε = 0, (2.37)

where the choice of sign is dictated by the choice of the sign in the Wess-Zumino term in

(2.21), and where

Γ ≡ 1

2!
√−γ εij∂iX

M∂jX
NΓMN . (2.38)
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Since Γ2 = 1 and tr Γ = 0, 1
2 (1 ± Γ) act as projection operators. From (2.28) and (2.29)

we see that

Γ = γ3 ⊗ 1, (2.39)

and hence (2.37) is satisfied as a consequence of (2.16). Equation (2.37) explains, from a

string point of view, why the solutions we have found preserve just half the supersymme-

tries. It originates from the fermionic κ-symmetry of the superstring action. The fermionic

zero-modes on the worldvolume are just the Goldstone fermions associated with the broken

supersymmetry [8,18].

As shown in [19] the elementary string solution saturates a Bogolmol’nyi bound for

the mass per unit length

M2 =

∫
d8y θ00, (2.40)

where θMN is the total energy-momentum pseudotensor of the combined gravity-matter

system. One finds

κM2 ≥ 1√
2
|e2|eφ0/2, (2.41)

where e2 is the Noether “electric ” charge whose conservation follows the equation of

motion of the 2-form (2.24), namely

e2 =
1√
2κ

∫

S7

e−φ ∗H, (2.42)

where ∗ denotes the Hodge dual using the canonical metric and the integral is over an

asymptotic seven-sphere surrounding the string. We find for our solution that

M2 = eφ0/2 T2, (2.43)

and

e2 =
√

2κ T2. (2.44)

Hence the bound is saturated. This provides another way, in addition to unbroken super-

symmetry, to understand the stability of the solution.

A straightforward generalization to exact, stable multi-string configurations can be

obtained by replacing the single string σ-model source by a superposition of N string

sources. The resulting solution is a linear superposition of solutions to (2.30)

e−2φ = e−2φ0

[
1 +

∑

ℓ

k2

| ~y − ~yℓ |6

]
, (2.45)
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where ~yℓ corresponds to the position of each string. The ability to superpose solutions of

this kind is a well-known phenomenon in soliton and instanton physics and goes by the

name of the “no-force condition”. In the present context, it means that the gravitational-

dilatonic attractive force acting on each of the strings is exactly cancelled by an equal

but repulsive force from the 2-form. This effect is also present in other elementary and

solitonic solutions and is closely related both to the saturation of the Bogomol’nyi bound

and to the existence of unbroken supersymmetry. In the supersymmetric context the

no-force condition is sometimes called “antigravity”. To see this explicitly, consider the

multi-string configurations (2.45) with, for example, N strings as sources. In general, we

do not have the transverse SO(8) symmetry, but we still have the P2 symmetry for the

configurations (2.45). Let each string with label l satisfy Xµ(l) = ξµ so that, in particular,

they all have the same orientation. The lagrangian for this N -string configuration in the

fields of the sources given by (2.2) and (2.3) is, from (2.21),

L2 = −T2

[√
−det(e2A+φ/2ηij + e2B+φ/2∂iY m(l)∂jYm(l)) − eC

]
, (2.46)

corresponding to a potential

V = T2(e
2A+φ/2 − eC). (2.47)

But this vanishes by the supersymmetry conditions (2.17). On the other hand, if the N -

strings had the opposite orientation, and hence the opposite sign e2, then the sign change

in the Wess-Zumino term in (2.46) would result in a net attractive force and therefore the

corresponding configurations cannot be stable.

2.2. The solitonic fivebrane

The elementary string discussed above is a solution of the coupled field-string system

with action I10(string) + S2. As such it exhibits δ-function singularities at y = 0. It is

characterized by a non-vanishing Noether electric charge e2. By contrast, we now wish to

find a solitonic fivebrane, corresponding to a solution of the source free equations resulting

from I10(string) alone and which will be characterized by a non-vanishing topological

“magnetic” charge g6.

To this end, we now make an ansatz invariant under P6 × SO(4). Hence we write

(2.1) and (2.2) as before where now µ = 0, 1 . . .5 and m = 6, 7, 8, 9. The ansatz for the
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antisymmetric tensor, however, will now be made on the field strength rather than on the

potential. From section 2.1 we recall that a non-vanishing electric charge corresponds to

1√
2κ
e−φ∗H = e2ε7/Ω7, (2.48)

where εn is the volume form on Sn. Accordingly, to obtain a non-vanishing magnetic

charge, we make the ansatz

1√
2κ
H = g6ε3/Ω3. (2.49)

Since this is an harmonic form, H can no longer be written globally as the curl of B, but

it satisfies the Bianchi identity. It is now not difficult to show that all the field equations

are satisfied. The solution is given by

e2φ = e2φ0

(
1 +

k6

y2

)
,

ds2 = e−(φ−φ0)/2ηµνdx
µdxν + e3(φ−φ0)/2δmndy

mdyn,

H = 2k6e
φ0/2ε3,

(2.50)

where µ, ν = 0, 1, ..., 5, m,n = 6, 7, 8, 9 and where

k6 =
κg6√
2Ω3

e−φ0/2. (2.51)

It follows that the mass per unit 5-volume now saturates a bound involving the magnetic

charge

M6 =
1√
2
| g6 | e−φ0/2. (2.52)

Note that the φ0 dependence is such that M6 is large for small M2 and vice-versa.

The electric charge of the elementary solution and the magnetic charge of the soliton

solution obey a Dirac quantization rule [27,28]

e2g6 = 2πn, n = integer, (2.53)

and hence from (2.44)

g6 = 2πn/
√

2κT2. (2.54)
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2.3. String/fivebrane duality

The 3-form version of D = 10, N = 1 supergravity admits the elementary string as a

solution [19]. In this and the next section we shall show that the 7-form version admits

the elementary fivebrane as a solution [29]. The elementary string can also be interpreted

as a magnetic-like solution of the 7-form version, as can the elementary fivebrane for the

3-form version. This suggests that the heterotic string and the heterotic fivebrane may be

dual to each other in the sense that they are equivalent descriptions of the same underlying

physical theory. In the dual formulation, the metric gMN and the dilaton φ are the same,

whereas the 7-form field strength K of the fivebrane is dual to the 3-form field strength of

the string H. More precisely,

H = eφ∗K, (2.55)

where ∗ denotes the Hodge dual using the canonical metric, so that the field equation of

the 3-form becomes the Bianchi identity of the 7-form and vice-versa. Hence

I10(fivebrane) =
1

2κ2

∫
d10x

√
−g
(
R− 1

2
(∂φ)2 − 1

2 · 7!
eφK2

)
, (2.56)

where K is the curl of the 6-form A:

K = dA. (2.57)

String/fivebrane duality will tell us that the fivebrane loop coupling constant g6 is

given by the inverse cube root of the string loop coupling constant g2,

g6 = g
−1/3
2 = e−φ0/3, (2.58)

which implies that the strongly coupled heterotic string corresponds to the weakly coupled

fivebrane, and vice versa. We will now derive (2.58) and the following relations between

the canonical gravitational metric and the metrics which appear naturally in the string

and fivebrane σ-models:

gMN (canonical) = e−φ/2gMN (string) = eφ/6gMN (fivebrane). (2.59)

In general, we have

gMN (string) = Ωs(φ)gMN (canonical), (2.60)

and

gMN (fivebrane) = Ωf (φ)gMN (canonical). (2.61)
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The corresponding lowest-order σ-model actions written in terms of the canonical metric

are given by

S2 = −T2

∫
d2ξ(

1

2

√
−γγij∂iX

M∂jX
NΩs(φ)gMN +

1

2
εij∂iX

M∂jX
NBMN ), (2.62)

for the string and

S6 = −T6

∫
d6ξ
(1
2

√
−γγij∂iX

M∂jX
NΩf (φ)gMN − 2

√
−γ

+
1

6!
εijklmn∂iX

M∂jX
N∂kX

O∂lX
P∂mX

Q∂nX
RAMNOPQR

) (2.63)

for the fivebrane. Note that in this case

γij = ∂iX
M∂jX

NΩf (φ)gMN . (2.64)

To lowest order, the actions I10(string) and S2 describe the same string (for example, the el-

ementary string), and the actions I10(fivebrane) and S6 describe the same fivebrane. More-

over, string/fivebrane duality implies that either I10(string) or I10(fivebrane) describes not

only the string but also the fivebrane by using (2.55). Therefore, we would expect that

both I10(string) and I10(fivebrane) should scale in the same way as both S2 and S6 under

the following constant rescalings:

gMN → αgMN , (2.65)

eφ → βeφ, (2.66)

BMN → λ2BMN , (2.67)

AMNOPQR → σ6AMNOPQR. (2.68)

From the above requirements, each of the actions I10(string), I10(fivebrane), S2 and S6

should also scale homogeneously. It follows from (2.62) that

S2 → λ2S2, (2.69)

and

Ωs(φ) → λ2

α
Ωs(φ), (2.70)

from (2.63) that

S6 → σ6S6, (2.71)
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and

Ωf (φ) → σ2

α
Ωf (φ), (2.72)

from (2.19) that

I10(string) → α4I10(string), (2.73)

and

λ4 = βα2, (2.74)

and from (2.56) that

I10(fivebrane) → α4I10(fivebrane), (2.75)

and

α6 = βσ12. (2.76)

As expected, I10(string) scales the same way as I10(fivebrane). Combining either (2.73) or

(2.75) with (2.69) and (2.71), we obtain

α4 = λ2σ6. (2.77)

Hence, by using (2.74), (2.76) and (2.77), we obtain

α = λ1/2σ3/2, (2.78)

and

β = λ3σ−3. (2.79)

Substituting (2.79) into (2.66), and (2.78) into (2.65), (2.70) and (2.72), respectively, we

obtain

eφ → λ3σ−3eφ, (2.80)

gMN → λ1/2σ3/2gMN , (2.81)

Ωs(φ) → (λ3σ−3)1/2Ωs(φ), (2.82)

and

Ωf (φ) → (λ3σ−3)−1/6Ωf (φ). (2.83)

Comparing (2.82) and (2.83) with (2.80), we immediately have

Ωs(φ) = eφ/2, Ωf (φ) = e−φ/6, (2.84)
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which implies (2.59). This result agrees with what one obtains in string theory by setting

the β-functions of gMN , BMN and φ to zero, i.e. by using string worldsheet conformal

invariance.

We are now ready to derive (2.58). This can be achieved simply by writing I10(string)

and I10(fivebrane) in terms of string and fivebrane metrics given in (2.59), respectively.

We obtain for the string action

I10(string) =
1

2κ2

∫
d10x

√
−ge−2φ

(
R + 4(∂φ)2 − 1

2 · 3!
H2
)
, (2.85)

where the common factor e−2φ for each term implies that the string loop counting param-

eter g2 is given by

g2 = eφ0 . (2.86)

For the fivebrane action,

I10(fivebrane) =
1

2κ2

∫
d10x

√−ge2φ/3
(
R− 1

2 · 7!
K2
)
, (2.87)

and an analogous situation arises, namely a common factor e2φ/3 in front of each

term. Although we have yet to construct the heterotic fivebrane action and quantize

it, string/fivebrane duality tells that if heterotic string theory is a sensible theory, then

so is heterotic fivebrane theory. So we would expect that the action (2.87) would be the

field-theory limit of the heterotic fivebrane. In analogy with the case of (2.85), the common

factor of (2.87) suggests that the fivebrane loop counting parameter g6 is given by

g6 = e−φ0/3. (2.88)

Combining (2.86) and (2.88) we obtain (2.58).

2.4. The elementary fivebrane

In this section, we rederive the fivebrane soliton as an elementary electric-like singular

solution, the “elementary fivebrane” [29] of the 7-form version of D = 10, N = 1 super-

gravity, which is the analog of a static electric-like singular “elementary string” solution

[19] of the 3-form version.

We want to find a vacuum-like supersymmetric configuration with D = 6 super-

Poincare symmetry from the 7-form version of D = 10, N = 1 supergravity theory. As
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usual, the fermionic fields should vanish for this configuration. We start by making an

ansatz for the D = 10 metric gMN , 6-form AMNOPQR and dilaton φ (M = 0, 1, · · · , 9)

corresponding to the most general six-four split invariant under P6 × SO(4), where P6 is

the D = 6 Poincare group. We split the indices

xM = (xµ, ym), (2.89)

where µ = 0, · · · , 5 and m = 6, · · · , 9, and write the line element as

ds2 = e2Aηµνdx
µdxν + e2Bδmndy

mdyn, (2.90)

and the six-form gauge field as

Aµνρσλτ = − 1
6g
εµνρσλτe

C , (2.91)

where 6g is the determinant of gµν , εµνρσλτ ≡ gµαgνβgργgσδgλǫgτξε
αβγδǫξ and ε012345 = 1,

i.e. A012345 = −eC . All other components of AMNOPQR and all components of the

gravitino ψM and dilatino λ are set zero. P6 invariance requires that the arbitrary functions

A,B and C depend only on ym; SO(4) invariance then requires that this dependence be

only through y =
√
δmnymyn. Similarly, our ansatz for the dilaton is

φ = φ(y). (2.92)

As we shall now show, the four arbitrary functions A,B,C, and φ are reduced to one

by the requirement that the field configurations (2.90), (2.91) and (2.92) preserve some

unbroken supersymmetry. In other words, there must exist Killing spinors ε satisfying

δψM = DMε+
1

2 · 8!
eφ/2

(
3 ΓM

NOPQRST − 7 δM
NΓOPQRST

)
KNOPQRST ε = 0, (2.93)

δλ = − 1

2
√

2
ΓM∂Mφε− 1

2 · 2
√

2 · 7!
eφ/2 ΓMNOPQRSKMNOPQRS ε = 0, (2.94)

where

KMNOPQRS = 7∂[MANOPQRS]. (2.95)

We make a six-four split

ΓA = (γα ⊗ 1, γ7 ⊗ Σa), (2.96)
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where γα and Σa are the D = 6 and D = 4 Dirac matrices, respectively. We also define

γ7 = γ0γ1γ2γ3γ4γ5, (2.97)

so that γ2
7 = 1 and

Γ5 = Σ6Σ7Σ8Σ9, (2.98)

so that Γ2
5 = 1. The most general spinor consistent with P6 × SO(4) invariance takes the

form

ε(x, y) = ǫ⊗ η, (2.99)

where ǫ is a spinor of SO(1, 5) which may be further decomposed into chiral eigenstates

via the projection operators (1 ± γ7) and η is an SO(4) spinor which may further be

decomposed into chiral eigenstates via the projection operators (1±Γ5). The N = 1, D =

10 supersymmetry parameter is, however, subject to the ten-dimensional chirality condition

Γ̃11 ε = ε, (2.100)

where Γ11 = γ7 ⊗ Γ5 and so the D = 4 and D = 6 chiralities are correlated.

In our background (2.90), (2.91) and (2.92), the transformation rules (2.93) and (2.94)

reduce to

∂µ ε− 1

8
γµ Σm

[
1

2
eφ/2−6A∂me

C − 4 γ7∂mA

]
ε = 0, (2.101)

∂m ε+
1

2
(ΣmΣn∂nB − ∂mB) ε

+
1

16
eφ/2−6A γ7 (3 ΣmΣn∂ne

C + 4 ∂me
C) ε = 0,

(2.102)

and

Σm

(
1

2
eφ/2−6A∂me

C + γ7∂mφ

)
ε = 0. (2.103)

Note that the γµ and Σm carry world indices. Hence we find that [29]

ε = e−φ/8ǫ0 ⊗ η0, (2.104)

where ǫ0 and η0 are constant spinors satisfying

(1 − γ7)ǫ0 = 0, (1 − Γ5)η0 = 0, (2.105)

28



and where

A = −φ
4

+ cA,

B =
3φ

4
+ cB,

C = −2φ+ 6cA,

(2.106)

where cA and cB are constants. If we insist that the metric is asymptotically Minkowskian,

then

cA = +
φ0

4
, cB = − 3φ0

4
. (2.107)

The condition (2.105) means that one half of the supersymmetries are broken.

At this stage the four unknown functions A, B, C and φ have been reduced to one

by supersymmetry. To determine φ, we must substitute the ansatz into the field equations

which follow from the action I10(fivebrane) + S6. In canonical variables, the supergravity

field equations are

RMN − 1

2
gMNR − 1

2

(
∂Mφ ∂Nφ− 1

2
gMN (∂φ)2

)

− 1

2 · 6!

(
KM

OPQRSTK
NOPQRST − 1

14
gMNK2

)
eφ

= κ2TMN (fivebrane),

(2.108)

where

TMN (fivebrane) = −T6

∫
d6ξ

√
−γ γij∂iX

M∂jX
Ne−φ/6 δ10(x−X)√−g , (2.109)

∂M (
√
−g eφKMNOPQRS)

= 2κ2T6

∫
d6ξ εijklmn∂iX

N∂jX
O∂kX

P∂lX
Q∂mX

R∂nX
Sδ10(x−X),

(2.110)

− φ+
1

2 · 7!
eφK2 =

κ2T6

6

∫
d6ξ

√−γ γij∂iX
M∂jX

NgMNe
−φ/6 δ

10(x−X)√−g . (2.111)

Furthermore, the fivebrane field equations are

∂i(
√−γ γij∂jX

NgMN e−φ/6) − 1

2

√−γ γij∂iX
N∂jX

P∂M (gNP e−φ/6)

− 1

6!
εijklmn∂iX

N∂jX
O∂kX

P∂lX
Q∂mX

R∂nX
SKMNOPQRS = 0,

(2.112)

and

γij = ∂iX
M∂jX

NgMNe
−φ/6. (2.113)
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To solve these coupled supergravity-fivebrane equations we make the static gauge choice

Xµ = ξµ, µ = 0, 1, 2, 3, 4, 5 (2.114)

and the ansatz

Xm = Y m = constant, m = 6, 7, 8, 9. (2.115)

As an example, let us now substitute (2.106), (2.114) and (2.115) into the 6-form equation

(2.110). We find

δmn∂m∂ne
2φ = −2κ2T6e

3φ0/2δ4(y), (2.116)

and hence

e2φ = e2φ0

(
1 +

k6

y2

)
, (2.117)

where the constant k6 is now given by

k6 ≡ κ2T6

Ω3
e−φ0/2. (2.118)

One may verify that all the field equations (2.108) to (2.113) are reduced to a single

equation (2.116) by using (2.107), (2.114), (2.115) and the expressions for the Ricci tensor

RMN and Ricci scalar R in terms of A and B given in the general case above.

Having established that the supergravity configuration preserves half the supersym-

metries, we must also verify that the fivebrane configuration (2.114) and (2.115) also

preserve these supersymmetries. As discussed in [44], the criterion is that in addition to

the existence of Killing spinors satisfying (2.93) and (2.94) we must also have

(1 − Γ̃)ε = 0, (2.119)

where the choice of sign is dictated by the choice of the sign in the Wess-Zumino term in

(2.63), and where

Γ̃ ≡ 1

6!
√−γ εijklmn∂iX

M∂jX
N∂kX

O∂lX
P∂mX

Q∂nX
RΓMNOPQR. (2.120)

Since Γ̃2 = 1 and trΓ̃ = 0, 1
2(1± Γ̃) act as projection operators. From (2.114) and (2.115)

we see that

Γ̃ = γ7 ⊗ 1, (2.121)

and hence (2.119) is satisfied as a consequence of (2.105). (2.119) explains, from a fivebrane

point of view, why the solutions we have found preserve just half the supersymmetries. It
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originates from the fermionic κ-symmetry of the superfivebrane action. Again the fermionic

zero-modes on the worldvolume are just the Goldstone fermions associated with the broken

supersymmetry [8,18].

Using the same method as in section 2.1, we may also establish a bound for the mass

per unit area of the fivebrane

M6 =

∫
d4y θ00, (2.122)

where θMN is the total energy-momentum pseudotensor of the combined gravity-matter

system. One finds

κM6 ≥ 1√
2
|ẽ6|e−φ0/2, (2.123)

where ẽ6 is the Noether charge whose conservation follows the equation of motion of the

6-form (2.110), namely

ẽ6 =
1√
2κ

∫

S3

eφ ∗K, (2.124)

where ∗ denotes the Hodge dual and the integral is over an asymptotic three-sphere sur-

rounding the fivebrane. We find for our solution that

M6 = e−φ0/2 T6, (2.125)

and

ẽ6 =
√

2κ T6. (2.126)

Hence the bound is saturated. Once again, this provides another way, in addition to

unbroken supersymmetry, to understand the stability of the solution.

As in the case of the elementary string, there is a straightforward generalization to

exact, stable multi-fivebrane configurations by linear superposition of

e2φ = e2φ0

[
1 +

∑

ℓ

k6

| ~y − ~yℓ |2

]
, (2.127)

where ~yℓ corresponds to the position of each fivebrane. In this case the no-force condi-

tion results from the cancellation of the gravitational-dilatonic attractive force with the

repulsive force from the 6-form. To see this explicitly, consider the multi-fivebrane config-

urations (2.127) with, for example, N fivebranes as sources. In general, we do not have

the transverse SO(4) symmetry, but we still have the P6 symmetry for the configurations

(2.127). Let each fivebrane with label l satisfy Xµ(l) = ξµ so that, in particular, they all
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have the same orientation. The lagrangian for this N -fivebrane in the fields of the sources

given by (2.90) and (2.91) is, from (2.63),

L6 = −T6

[√
−det(e2A−φ/6ηij + e2B−φ/6∂iYm(l)∂jYm(l)) − eC

]
, (2.128)

corresponding to a potential

V = T6(e
6A−φ/2 − eC). (2.129)

But this vanishes by the supersymmetry conditions (2.17). On the other hand, if the N -

fivebrane had the opposite orientation, and hence the opposite ẽ6, then the sign change in

the Wess-Zumino term in (2.128) would result in a net attractive force and therefore the

corresponding configurations cannot be stable.

2.5. The solitonic string

Finally, just as the fivebrane was seen as a solitonic solution of string theory, one

can re-interpret the elementary string solution of section 2.1 as a soliton of the fivebrane

theory, i.e. as a solution of the source-free equations resulting from I10(fivebrane). The

solution will be characterized by a non-vanishing topological “magnetic” charge g2

1√
2κ
K = g̃2ε7/Ω7. (2.130)

The solution is given by

e−2φ = e−2φ0

(
1 +

k2

y6

)
,

ds2 = e3(φ−φ0)/2ηµνdx
µdxν + e−(φ−φ0)/2δmndx

mdxn,

K = 6k2e
−3φ0/2ε7,

(2.131)

where µ, ν = 0, 1, m,n = 2, 3, ..., 9 and where

k2 =
κg̃2

3
√

2Ω7

e3φ0/2. (2.132)

It follows that the mass per unit length now saturates a bound involving the magnetic

charge

M2 =
1√
2
| g̃2 | eφ0/2. (2.133)
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Note that the φ0 dependence is such that M2 is large for small M6 and vice-versa.

The electric charge of the elementary fivebrane and the magnetic charge of the solitonic

string obey a Dirac quantization rule [27,28]

ẽ6g̃2 = 2πn, n = integer, (2.134)

and hence from (2.126)

g̃2 = 2πn/
√

2κT6. (2.135)

The introduction of the elementary fivebrane and the solitonic string allows us to

translate the Dirac quantization rules into a condition on the tensions of the string and

fivebrane. From (2.55), (2.42) and (2.124) it follows that

e2 = g̃2, ẽ6 = g6. (2.136)

It then follows from (2.44), (2.126), (2.53) and (2.134) that

κ2T2T6 = |n|π, n = integer. (2.137)

2.6. Singular or non-singular?

Neither the elementary string nor the elementary fivebrane qualify for the epithet

“soliton”. They were obtained by coupling supergravity to the corresponding σ-models

and hence display a δ-function singularity at the location of the source y = 0. Moreover,

in both cases the curvature calculated from the σ-model metric blows up at y = 0. To see

this we rewrite the string solution (2.2) in the string σ-model metric (in what follows we

set φ0 = 0 for simplicity)

ds2 =

(
1 +

k2

y6

)−1

ηµνdx
µdxν + δmndx

mdxn. (2.138)

We may verify that this metric exhibits a curvature singularity by computing the scalar

curvature

Rstring(string σ − model) ∼ −y−2. (2.139)

Similarly, we rewrite the fivebrane solution (2.90) in the fivebrane σ-model metric

ds2 =

(
1 +

k2

y2

)−1/3

ηµνdx
µdxν +

(
1 +

k2

y2

)2/3

δmndx
mdxn. (2.140)
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We may also verify that this metric exhibits a curvature singularity by computing the

scalar curvature

Rfivebrane(fivebrane σ − model) ∼ −y−2/3. (2.141)

(Incidentally, Rstring and Rfivebrane both blow up as y−1/2 in canonical variables.)

To justify that the solitonic string and fivebrane are worthy of their name, therefore,

we must demonstrate that they are nonsingular. To show this, we now rewrite the string

metric in fivebrane variables

ds2 =

(
1 +

k2

y6

)−2/3

ηµνdx
µdxν +

(
1 +

k2

y6

)1/3 (
dy2 + y2dΩ2

7

)
, (2.142)

and the fivebrane metric in string variables

ds2 = ηµνdx
µdxν +

(
1 +

k6

y2

)(
dy2 + y2dΩ2

3

)
. (2.143)

Remarkably, both are free of curvature singularities, as may be seen by noting that, as

y → 0, the radius of S7 in (2.142) tends to the finite value k
1/6
2 and the radius of S3

in (2.143) tends to the finite value k
1/2
6 . This is confirmed by a calculation of the scalar

curvatures. We find

Rstring(fivebrane σ − model) ∼ +k
−1/3
2 (2.144)

Rfivebrane(string σ − model) ∼ +k−1
6 . (2.145)

Note that throughout this report we have employed the fivebrane σ-model metric of [29,26]

given in (2.61), for which gMN (fivebrane σ − model) = e−2φ/3gMN (string σ − model).

Now any metric e−cφgMN (string σ − model) will yield string solutions with non-singular

curvature and any metric e+cφgMN (fivebrane σ − model) will yield fivebrane solutions with

non-singular curvature provided c ≥ 2/3. Interestingly enough, however, only the unique

choice c = 2/3 yields metrics which are also free of conical singularities [45,46]. From the

point of view of metric singularities, therefore, the string is a singular solution of string

theory and a nonsingular solution of fivebrane theory, whereas the fivebrane is a singular

solution of fivebrane theory and a nonsingular solution of string theory. Thus the singu-

larity structure is entirely symmetric between strings and fivebranes, in accordance with

string/fivebrane duality.

We shall now show how to reach the same conclusion from a somewhat more physical

test-probe/source approach [34]. Does a test-probe fall into the source in a finite proper
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time, as measured by its own clock, in which case the singularity is real, or in an infinite

proper time, in which case the singularity is harmless? We find that the answer is probe-

dependent. We shall show that when test probe and source are both strings or both

fivebranes the singularity is real. By contrast, we shall show that if one is a string and the

other a fivebrane, the singularity is harmless.

Let us consider the trajectory of a test string falling radially into a source string,

oriented along x1 = ξ1. For simplicity, let the test string lie either parallel or antiparallel

to the source string. If we eliminate γij from (2.21) and substitute the solution of section

2.1, we find that the lagrangian governing the dynamics of the test string is given by

L2 = −T2e
2φ

(√
ṫ2 − ẏ2e−2φ ∓ ṫ

)
, (2.146)

where the minus (plus) sign corresponds to the parallel (antiparallel) configuration. The

time derivative is with respect to ξ0, which we choose to be the proper time τ measured

by a clock at rest in the frame of the test string. From section 2.1 this is given by

dτ2 = −eφ/2ds2 = e2φdt2 − dy2. (2.147)

Thus the calculation has been reduced to a one-dimensional problem and the dynamics of

(2.146) is similar to that of a point particle whose mass is equal or opposite to its electric

charge. Since there is no explicit time-dependence in L2, we have the following constant

of the motion
∂L2

∂ṫ
= −T2e

2φ

(
ṫ√

ṫ2 − ẏ2e−2φ
∓ 1

)
= −T2E. (2.148)

E is the constant energy per unit mass of the motion and is determined from the intial

conditions. Note that for the parallel strings case, we recover the zero static force result

by noting that if ẏ = 0 initially, then E = 0 and ẏ = 0 everywhere. We also recover the

vanishing leading order (in the velocity) dynamic force result found in [20]. From (2.148)

we obtain an expression for the coordinate velocity

(
dy

dt

)2

=
E2e−2φ ± 2E

(Ee−2φ ± 1)
2 . (2.149)

We now wish to relate the radial position to the proper time. Combining (2.149) and

(2.147) we obtain (
dy

dτ

)2

= e−2φ
(
E2e−2φ ± 2E

)
(2.150)
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for the proper velocity in terms of the radial position. The acceleration can be obtained by

differentiating (2.150) with respect to τ and replacing (2.150) in the resulting expression.

The acceleration written in terms of the position is independent of the sign of the velocity

and is given by
d2y

dτ2
= −6k2E

2

y7

(
1 +

k2

y6
±E−1

)
. (2.151)

For parallel strings, the force is always attractive when initially ẏ 6= 0. For antiparallel

strings, the acceleration is always inward, and the test string does indeed fall towards the

source string. We may thus choose the negative sign for the square roots in (2.149) and

(2.150). To calculate the proper time taken for the test string to reach the source string,

we rewrite (2.150) and integrate

τ0 =

∫ τ0

0

dτ =

∫ y0

0

dy√
e−2φ (E2e−2φ ± 2E)

. (2.152)

On using the expression for φ from section 2.1, we note that τ0 is finite. Thus the test

string falls into the source string in a finite amount of time, and the singularity is real. In

particular, let us focus on the case where the test string is antiparallel to the source string.

If ẏ = 0 at y = y0, then

E = 2e2φ(y0) =
2

1 + k2/y6
0

. (2.153)

Let x ≡ y/y0, then τ0 can be written as

τ0 =
e−2φ(y0)y4

0

2
√
k2

∫ 1

0

dxx6

√
(x6 + k2/y6

0)(1 − x6)
. (2.154)

For large y0, we find that τ0 ∼ k
−1/2
2 . Since the mass per unit length of the string is given

by M2 = T2 [19], this means that τ0 ∼ M−1/2
2 , which is the same dependence of the time

on the mass for an observer falling into a Schwarzschild black hole. Just as for the black

hole case, moreover, it is easy to see from (2.150) and (2.151) that the proper velocity and

acceleration both tend to infinity as the test string approaches the singularity. To further

strengthen the analogy with a black hole-type singularity, one can calculate the elapsed

distant observer time for the fall. In this case one can easily show that t0 → ∞, dy/dt→ 0

and d2y/dt2 → 0 as the test string approaches the singularity. In other words, the distant

observer never sees the test string reach the singularity. In this case, the event horizon is

at the singularity.
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We shall now repeat the above calculation for a test-fivebrane falling radially into a

source fivebrane oriented along xa = ξa, (a = 1, ..., 5). Again, we let the test fivebrane

lie either parallel or antiparallel to the source fivebrane, i.e. with the same or opposite

orientation. If we eliminate γij from (2.63) and the fivebrane solution of section 2.4, we

find that the lagrangian governing the dynamics of the test fivebrane is given by

L6 = −T6e
−2φ

(√
ṫ2 − ẏ2e2φ ∓ ṫ

)
, (2.155)

where the minus (plus) sign corresponds to the parallel (antiparallel) configuration. The

time derivative is with respect to ξ0, which we choose to be the proper time τ measured

by a clock at rest in the frame of the test fivebrane. From section 2.4 this is given by

dτ2 = −e−φ/6ds2 = e−2φ/3
(
dt2 − e2φdy2

)
. (2.156)

This time the Euler-Lagrange equations yield the following constant of the motion

∂L6

∂ṫ
= −T6e

−2φ

(
ṫ√

ṫ2 − ẏ2e2φ
∓ 1

)
= −T6E. (2.157)

From (2.157) we obtain an expression for the coordinate velocity

(
dy

dt

)2

=
E2e2φ ± 2E

(Ee2φ ± 1)
2 . (2.158)

Combining (2.158) and (2.90) we obtain

(
dy

dτ

)2

= e2φ/3
(
E2e2φ ± 2E

)
(2.159)

for the proper velocity in terms of the radial position. The acceleration can be obtained by

differentiating (2.159) with respect to τ and replacing (2.159) in the resulting expression.

The acceleration written in terms of the position is independent of the sign of the velocity

as in the string-string case and is again attractive, so the test fivebrane does indeed fall

towards the source fivebrane. To calculate the proper time taken for the test fivebrane to

reach the source fivebrane we rewrite (2.159) and integrate

τ0 =

∫ τ0

0

dτ =

∫ y0

0

dy√
e2φ/3 (E2e2φ ± 2E)

. (2.160)
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On using the expression for φ from section 2.4, we note again that τ0 is manifestly finite.

Thus the test fivebrane falls into the source fivebrane in a finite amount of time, and the

singularity is real. In the antiparallel case, the dependence of the time on the mass of a

source for the test fivebrane initially at rest and for large initial separation is again of the

form τ0 ∼ k
−1/2
6 . Since the mass per unit 5-volume of the fivebrane is given by M6 = T6

[29], this means τ0 ∼ M−1/2
6 as for the string. It is easy to see that the proper velocity and

acceleration both → ∞ as the test fivebrane approaches the singularity and that t0 → ∞,

dy/dt→ 0 and d2y/dt2 → 0. Once more, the event horizon is located at the singularity.

An entirely different state of affairs holds for a test string moving in the background

of a source fivebrane or, by duality, a test fivebrane moving in the background of a source

string. In this case, the test probe takes an infinite amount of proper time to reach the

source. First we consider the trajectory of a test string falling radially into a source

fivebrane, oriented along xa = ξa (a = 1, 2, ..., 5). Let the test string lie either parallel

or antiparallel to one of the fivebrane directions, say x1. From section 2.4, the only

nonvanishing components ofK are of the form K012345m, where the directions m = 6, 7, 8, 9

are transverse to the fivebrane. By dualizing, we see that the only nonzero components

of H = dB are Hpqr(y), where again, p, q, r = 6, 7, 8, 9. It follows that the only nonzero

components of BMN occur when M,N = 6, 7, 8, 9. It then follows that the WZW term

ǫij∂iX
M∂jX

NBMN vanishes. Substituting the fivebrane solution in (2.21), we find that

the test string lagrangian reduces to

L2 = −T2

√
ṫ2 − e2φẏ2 (2.161)

for purely radial motion. From (2.50) and (2.20), the proper time is given by

dτ2 = −eφ/2ds2 = dt2 − e2φdy2. (2.162)

Again we have a constant of the motion

∂L2

∂ṫ
= −T2

ṫ√
ṫ2 − e2φẏ2

= −T2E. (2.163)

Note that E = 1 corresponds to a zero static force. We invert (2.163) to obtain the

coordinate velocity (
dy

dt

)2

= e−2φ
(
1 − 1/E2

)
. (2.164)
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Combining (2.162) and (2.163), we obtain the proper velocity

(
dy

dτ

)2

=
(
E2 − 1

)
e−2φ. (2.165)

The acceleration is given by
d2y

dτ2
=
k6(E

2 − 1)e−4φ

y3
. (2.166)

Note that the acceleration is repulsive in this case. In both the y → 0 and y → ∞
limits, the acceleration vanishes (an asymptotic freedom of some sort). We assume that

the string is directed towards the fivebrane initially. The time taken for the fall from an

initial position y0

τ0 =
1√

E2 − 1

∫ y0

0

eφdy (2.167)

diverges logarithmically with y. Therefore it takes the string an infinite amount of proper

time to reach the singularity. In other words, the string never sees the singularity, and as

far as the string is concerned, the singularity is not real.

An analogous calculation for a test fivebrane falling towards a source string shows

that the string is nonsingular as a source for fivebranes. For a test fivebrane with one of

its spatial directions parallel to the string, the WZW term again vanishes, as in the above

case. In this case, substituting the string solution into (2.63), the lagrangian reduces to

L6 = −T6

√
ṫ2 − e−2φẏ2 (2.168)

for purely radial motion. From the (2.131) and (2.61), the proper time is given by

dτ2 = −e−φ/6ds2 = e4φ/3
(
dt2 − e−2φdy2

)
. (2.169)

Again we have a constant of the motion

∂L6

∂ṫ
= −T6

ṫ√
ṫ2 − e2φẏ2

= −T6E. (2.170)

Again E = 1 corresponds to a zero static force. We invert (2.170) to obtain the coordinate

velocity (
dy

dt

)2

= e2φ
(
1 − 1/E2

)
. (2.171)

Combining (2.171) and (2.169) we obtain the proper velocity

(
dy

dτ

)2

=
(
E2 − 1

)
e2φ/3. (2.172)
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The acceleration is again found to be repulsive and is given by

d2y

dτ2
=
k2(E

2 − 1)e8φ/3

y7
. (2.173)

Again the acceleration vanishes in both the y → 0 and y → ∞ limits. Now assume that

the fivebrane is directed towards the string initially. The time taken for the fall from an

initial position y0 is given by

τ0 =
1√

E2 − 1

∫ y0

0

e−φ/3dr, (2.174)

and again diverges logarithmically with y. Therefore it takes the fivebrane an infinite

amount of proper time to reach the singularity. In other words, the fivebrane never sees

the singularity, and as far as the fivebrane is concerned, the string singularity is not real.

We have seen that, as far as singularities are concerned, the superstring and the super-

fivebrane solitons are on an equal footing: the fivebrane is a singular solution of fivebrane

theory but a non-singular solution of string theory while the string is a singular solution of

string theory but a non-singular solution of fivebrane theory. What is asymmetric, how-

ever, is the state of current technology. One can prove rigorously that I10(string) describes

the field theory limit of string theory and that the string loop coupling constant is, from

(2.20) given by g(string) = eφ0 ; one has only plausibility arguments that the dual action

I10(fivebrane) describes the field-theory limit of fivebrane theory and that the fivebrane

loop coupling constant is, from (2.61), g(fivebrane) = e−φ0/3 and hence that the strong

coupling limit of the string corresponds to the weakly coupled fivebrane and vice-versa

[26].

2.7. Strings and fivebranes as interpolating solitons

In this section we discuss how in string σ-model metric, the solitonic fivebrane solu-

tion of D = 10 supergravity interpolates [45] between D = 10 Minkowski spacetime and a

supersymmetric S3 compactification to a linear dilaton vacuum [47]. Furthermore, in five-

brane sigma-model metric, the solitonic string solution of D = 10 supergravity interpolates

[46] between D = 10 Minkowski spacetime and a supersymmetric S7 compactification to

a three-dimensional anti-de Sitter generalization of the linear dilaton vacuum, which may

be invariantly characterized in terms of conformal Killing vectors [47].
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Let us first consider the solitonic fivebrane solution of section 2.4 in string variables

rewritten in terms of a new radial coordinate r2 = y2 + b2 where b2 = k6

ds2 = −dt2 + dx · dx +

(
1 − b2

r2

)−2

dr2 + r2dΩ2
3

e−2φ = 1 − b2

r2

H = 2b2ε3 ,

(2.175)

where dx · dx is the Euclidean 5-metric, dΩ2
3 the standard metric on the unit 3-sphere and

ε3 its volume 3-form. To determine the asymptotic form of the metric near r = b we let

r = b

(
1 +

e2ρ/b

2

)
. (2.176)

In the limit r = b (2.175) reduces to

ds2 ∼ (−dt2 + dx · dx + dρ2) + b2dΩ2
3

φ ∼ −1

b
ρ

H ∼ 2b2ε3

(2.177)

which is M7 × S3, with a linear dilaton vacuum. That is, in string sigma-model metric

the solitonic fivebrane interpolates between ten-dimensional Minkowski spacetime and the

product of S3 with a seven-dimensional Minkowski spacetime.

Next we consider the solitonic string solution of section 2.5 in fivebrane variables

written in terms of a new radial coordinate r6 = y6 + b6 where b6 = k2

ds2 =

(
1 − b6

r6

) 2
3 (

−dt2 + dσ2
)

+

(
1 − b6

r6

)−2

dr2 + r2dΩ2
7

e−2φ =

(
1 − b6

r6

)−1

K = 6b6ε7.

(2.178)

This time we define

r = a

(
1 +

e6ρ/b

6

)
. (2.179)

Near r = b (2.178) reduces to

ds2 ∼ e4ρ/b
(
−dt2 + dσ2

)
+ dρ2 + b2dΩ2

7

φ ∼ 3

b
ρ

K ∼ 6b6ε7.

(2.180)
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The metric is the standard metric on the product of S7 with three-dimensional anti-de

Sitter space, adS3. Clearly, the dilaton is linear only for the special choice of coordinates

used here, and since the spacetime factor of the asymptotic metric is not Minkowski (as

it was for the fivebrane solution) but rather adS3, the geometrical significance of linearity

is unclear from the above result. We verify below that the S7 compactification of D=10

supergravity implied by this analysis indeed exists, incidentally elucidating the geometrical

significance of ‘linear’ in the adS context.

Let {xM ; M = 0, 1, . . . , 9} be coordinates for the ten-dimensional spacetime, and

define

Φ = e2φ/3. (2.181)

The field equations of (2.87) can now be written as

RMN = Φ−1DMDNΦ +
1

2.6!
KMP1...P6

KN
P1...P6 − 1

3.7!
gMNK

2 (2.182)

∂M (
√−gΦKMN1...N6) = 0 (2.183)

Φ =
1

3.7!
K2Φ. (2.184)

We now split the coordinates {xM} into {xµ, ym} with µ = 0, 1, 2 and m = 1, . . . , 7,

and seek product metrics of the form

gµν = gµν(x) gmn = gmn(y) (2.185)

with gµn = 0. In this case,
√−g = e3(x)e7(y) where e3 and e7 are the scalar density

volume factors for the three and seven-dimensional spaces, respectively. It follows that

(2.183) is now solved by setting

Km1...m7 = 3m(e7)
−1εm1...m7 (2.186)

for some constant m, with all other components of K vanishing, whereupon (2.184) be-

comes

( − 3m2)Φ = 0 (2.187)

We now suppose that Φ = Φ(x), and further that

Dµ∂νΦ =
1

3
gµν Φ (2.188)
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or, equivalently, in view of (2.187),

Dµ∂νΦ = m2gµνΦ (2.189)

which implies (2.187) and therefore supercedes it. Given (2.189), (2.182) reduces to the

two equations

Rµν = −2m2gµν Rmn =
3

2
m2gmn (2.190)

with Rmν = 0. These equations are solved by the standard invariant metrics on adS3 and

S7 respectively. It remains to solve (2.189). We can choose coordinates (t, σ, ρ) on adS3

such that the adS3 metric is

ds2 = e2mρ
(
−dt2 + dσ2

)
+ dρ2 (2.191)

In these coordinates it is straightforward to verify that

φ =
3m

2
ρ (2.192)

solves (2.189). We have therefore found an S7 compactification of D = 10 supergravity to

adS3 with a linear dilaton. Setting m = 2/b we recover (2.180), found previously as an

asymptotic limit of the extreme string solution.

Observe now that (2.188) implies that gµν∂µΦ ∂ν is a conformal Killing vector of adS3.

We have shown above that an eigenfunction of the Dalembertian on adS3 with eigenvalue

3m2 is the potential for a conformal Killing vector of adS3. A similar observation was

made previously in the context of an S3 compactification of D = 10 supergravity [47] to

adS7. In fact, both the S3 and S7 compactifications exhibited above are obtained from the

solutions found in [47] by the analytic continuation m → im. We now see that the linear

dilaton can be characterized in a coordinate-free way as proportional to the logarithm of

a conformal Killing potential.
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3. (d-1)-branes in diverse dimensions

3.1. Diverse dimensions

In the previous section, we focused on spacetime dimension D = 10, worldvolume

dimension d = 2 and dual worldvolume dimension d̃ = 8 − 2 = 6. The purpose of the

present section is to see how far these results generalize to arbitraryD, d, and d̃. We present

a generic Lagrangian, in arbitrary spacetime dimension D, describing the interaction of a

dilaton, a graviton and an antisymmetric tensor of arbitrary rank d. For each D and d, we

find black p̃-brane solutions where p̃ = d̃− 1 and d̃ = D − d − 2. These solutions display

a spacetime singularity surrounded by an event horizon, and are characterized by a mass

per unit p̃-volume Md̃, and topological “magnetic” charge gd̃, obeying
√

2κMd̃ ≥ gd̃. The

theory also admits elementary p-brane solutions with “electric” Noether charge ed, obeying

the Dirac quantization rule edgd̃ = 2πn, n = integer. We then present the Lagrangian

describing the theory dual to the original theory, whose antisymmetric tensor has rank d̃

and for which the roles of topological and elementary solutions are interchanged. In the

extreme limits
√

2κMd̃ = gd̃ or
√

2κMd = ed, the singularity and event horizon coalesce.

As discussed in section 4, for specific values of D and d, these extreme solutions also

exhibit supersymmetry and may be identified with previously classified heterotic, Type

IIA and Type IIB super p̃-branes. Curiously enough, the results obtained in section 2 on

the singularity structure of strings and fivebranes do not generalize to arbitrary d.

In section 3.2, we write down a general action in D spacetime dimensions describing

the interaction of an antisymmetric tensor potential of rank d with gravity and a dilaton.

We allow these fields to couple to an elementary d-dimensional extended object, (a p-

brane, with d = p + 1) and define an “electric” Noether charge associated with it. This

construction involves, in particular, the identification of the p-brane σ-model metric in

terms of the dilaton and the canonical metric.

In section 3.3, we show how the combined field equations admit solutions describing

such elementary objects, in much the same way as the elementary string emerged as a

solution of supergravity coupled to a string σ-model source in section 2.1. The mass per

unit p-volume Md and the Noether charge ed of these elementary solutions satisfy the

44



equality
√

2κMd = |ed|, which is the same relation found in section 2 for the supersym-

metric string and fivebrane. One may also demonstrate a no-force condition by showing

that the mutual gravitational-dilaton attraction of two such p-branes of the same orien-

tation is exactly cancelled by an equal and opposite contribution from the antisymmetric

tensor. This permits the construction of stable multi-p-brane solutions.

In addition to the singular elementary (d−1)-brane solutions carrying non-zero “elec-

tric” Noether charge ed, the theory also admits non-singular soliton (d̃−1)-brane solutions,

where d̃ = D − d− 2. As described in section 3.4, these solutions are dual to the elemen-

tary solutions and carry a non-zero “magnetic” topological charge gd̃, obeying the Dirac

quantization rule [27,28]

edgd̃ = 2πn, n = integer. (3.1)

In section 3.5 we consider the theory dual to the theory of section 3.2, for which the

roles of antisymmetric tensor field equations and Bianchi identities, and hence electric

and magnetic charges, are interchanged. This, together with our result for the σ-model

metric of section 3.2, leads to a relation between the loop expansion parameter gd of the

(d− 1)-brane and the loop expansion parameter gd̃ of the (d̃− 1)-brane. We find

gd
d = 1/gd̃

d̃
, (3.2)

thus confirming that strongly coupled (d−1) branes correspond to weakly coupled (d̃−1)-

branes and vice versa. The introduction of the σ-model metric permits a useful comparison

with Brans-Dicke theory.

D = 6 is of special interest because in this dimension a string is dual to another

string. Moreover, as discussed in section 3.6, this permits the construction of a “dyonic”

[48] solution carrying both electric charge e2 and magnetic charge g2. In the limit e2 = g2,

this solution reduces to the previously derived self-dual superstring [49].

Although many of the results of section 2 generalize in an obvious way to arbitrary

d and D, this is not the case for the issue of singularities. We show in section 3.7 that

although the curvature of the (d̃ − 1)-brane metric written in the dual (d − 1)-brane σ-

model variables is still finite at y = 0 for all d and D, the proper time for an infalling test

(d − 1)-brane to reach a source (d̃ − 1)-brane is finite only for particles and strings and

their duals.

Black p-branes, solutions with Md̃ ≥ 1√
2
gd̃ are discussed in section 3.8. These solu-

tions exhibit singularities shielded by an event horizon. As special cases, we recover the

D = 10 black p-branes (p = 0, . . .6) of [50], the D = 11 black p-branes (p = 2, 5) of [51]

and the D = 4 Kaluza-Klein black hole (p = 1) [52,53,54,55].
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3.2. The action

Consider an antisymmetric tensor potential of rank d, AM1M2...Md
, in D spacetime

dimensions (M = 0, 1, . . . (D − 1)) interacting with gravity, gMN , and the dilaton, φ, via

the action

ID(d) =
1

2κ2

∫
dDx

√
−g
(
R − 1

2
(∂φ)2 − 1

2(d+ 1)!
e−a(d)φF 2

d+1

)
, (3.3)

where the rank (d+ 1) field strength Fd+1 is given by

Fd+1 = dAd, (3.4)

and a(d) is an, as yet undetermined, constant. Special cases of this action have been

considered before in the context of classical solutions [56]. Here we keep both D and d

arbitrary. We allow these fields to couple to an elementary d-dimensional extended object

(a “(d−1)-brane”) whose trajectory is given by XM (ξi) (i = 0, 1, . . . (d−1)), worldvolume

metric by γij(ξ), and tension by Td, via the action

Sd = Td

∫
ddξ

(
− 1

2

√−γγij∂iX
M∂jX

NgMNe
a(d)φ/d +

(d− 2)

2

√−γ

− 1

d!
εi1i2...id∂i1X

M1∂i2X
M2 . . . ∂id

XMdAM1M2...Md

)
.

(3.5)

The φ dependence is chosen so that under the rescaling

gMN → λ2d/(D−2)gMN ,

AM1M2...Md
→ λdAM1M2...Md

,

eφ → λ2d(D−d−2)/(D−2)a(d)eφ,

γij → λ2γij ,

(3.6)

both actions scale the same way

ID(d) → λdID(d),

Sd → λdS.
(3.7)

The field equations and Bianchi identities of the A field may be written

d∗(e−a(d)φF ) = 2κ2(−)d2 ∗J, (3.8)
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dF ≡ 0, (3.9)

where the rank d source J is given by

JM1...Md = Td

∫
ddξεi1i2...id∂i1X

M1∂i2X
M2 . . . ∂id

XMd
δD(x−X)√−g . (3.10)

Let us introduce the dual worldvolume dimension, d̃, by

d̃ ≡ D − d− 2. (3.11)

We may now define two conserved charges: the Noether “electric” charge

ed =
1√
2κ

∫

Sd̃+1

e−a(d)φ∗F, (3.12)

where Sd̃+1 is the (d̃+ 1)-sphere surrounding the elementary (d− 1) brane, and the topo-

logical “magnetic” charge

gd̃ =
1√
2κ

∫

Sd+1

F. (3.13)

This latter charge will be non-zero if the action ID admits a solitonic d̃-dimensional ex-

tended object (a “(d̃ − 1)-brane”). These charges obey a Dirac quantization condition

[27,28],
edgd̃

4π
=
n

2
, n = integer (3.14)

analogous to the (d = 1, D = 4) condition that relates electric and magnetic charges. At

this stage, of course, it is not yet obvious that the system admits either elementary or

solitonic extended object solutions, nor if they do, what are the values of the electric and

magnetic charges ed and gd̃.

Let us first consider the field equations resulting from ID +Sd. The Einstein equation

is
√−g

[
RMN − 1

2
gMNR− 1

2
(∂Mφ∂Nφ− 1

2
gMN (∂φ)2)

− 1

2

1

d!
(FM

M1...Md
FNM1...Md − 1

2(d+ 1)
gMNF 2)e−a(d)φ

]

= κ2√−gTMN ((d− 1) − brane),

(3.15)
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where the energy-momentum tensor is given by

TMN ((d− 1) − brane) = −Td

∫
ddξ

√−γγij∂iX
M∂jX

Neaφ/d δ
D(x−X)√−g , (3.16)

the antisymmetric tensor equation is

∂M (
√−ge−aφFMM1...Md) = 2κ2Td

∫
ddξεi1...id∂i1X

M1 . . . ∂id
XMdδD(x−X), (3.17)

and the dilaton equation is

∂M (
√−ggMN∂Nφ) +

a(d)

2(d+ 1)!

√−ge−a(d)φF 2

=
a(d)κ2Td

d

∫
ddξ

√
−γγij∂iX

M∂jX
NgMNe

a(d)φ/dδD(x−X).

(3.18)

Furthermore, the (d− 1)-brane field equations are

∂i(
√
−γγij∂jX

NgMNe
a(d)φ/d) − 1

2

√
−γγij∂iX

N∂jX
P∂M (gNP e

a(d)φ/d)

− 1

d!
εi1...id∂i1X

M1 . . . ∂id
XMdFMM1...Md

= 0,

(3.19)

and

γij = ∂iX
M∂jX

NgMNe
a(d)φ/d. (3.20)

3.3. The elementary (d− 1)-brane

To solve these coupled field-(d − 1)-brane equations we begin by making an ansatz

for the D-dimensional metric gMN , d-form AM1
. . .Md, dilaton φ and coordinates XM(ξ)

corresponding to the most general d/(D − d) split invariant under Pd × SO(D− d) where

Pd is the d-dimensional Poincaré group. We split the indices

xM = (xµ, ym), (3.21)

where µ = 0, 1 . . . (d− 1) and m = d, d+ 1, . . . (D − 1), and write the line-element as

ds2 = e2Aηµνdx
µdxν + e2Bδmndy

mdyn, (3.22)
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and the d-form gauge field as

Aµ1...µd
= − 1

dg
εµ1...µd

eC , (3.23)

where dg is the determinant of gµν , εµ1...µd
≡ gµ1ν1

. . . gµdνd
εν1...νd and ε012...(d−1) = 1

i.e. A01...(d−1) = −eC . All other components of AM1...Md
are set to zero. Pd invariance

requires that the arbitrary functions A, B, C depend only on ym; SO(D − d) invariance

then requires that this dependence be only through y =
√
δmnymyn. Similarly our ansatz

for the dilaton is

φ = φ(y). (3.24)

In the (d− 1)-brane sector we also split

XM = (Xµ, Ym), (3.25)

and make the static gauge choice

Xµ = ξµ, (3.26)

and the ansatz

Ym = constant. (3.27)

Substituting these ansatz into (3.20) yields

γij = e2A+a(d)φ/dηij , (3.28)

and the only non-vanishing components of the field strength are

Fmµ1...µd
= − 1

dg
εµ1...µd

∂me
C . (3.29)

Then the µν components of the Einstein equation (3.15) reduce to a single equation

e(d−2)A+d̃Bδmn

[
(d− 1)∂m∂nA+

d(d− 1)

2
∂mA∂nA+ (d̃+ 1)∂m∂nB

+
(d̃+ 1)d̃

2
∂mB∂nB + d̃(d− 1)∂mA∂nB

+
1

4
e−2dA+2C−a(d)φ∂mC∂nC +

1

4
∂mφ∂nφ

]

= −κ2Tde
(d−2)A+a(d)φ/2δD−d(y),

(3.30)
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and the mn components reduce to

edA+(d̃−2)B

[
− d̃∂m∂nB + δmnd̃δkl∂k∂lB

− d∂m∂nA+ dδmnδkl∂k∂lA− d∂mA∂nA+
d(d+ 1)

2
δmnδkl∂kA∂lA

+ d(∂mA∂nB + ∂mB∂nA+ (d̃− 1)δmnδkl∂kA∂lB)

− 1

2
∂mφ∂nφ+

1

4
δmnδkl∂kφ∂lφ

]

− 1

2
e−dA+(d̃−2)B+2C−a(d)φ

[
− ∂mC∂nC +

1

2
δmnδkl∂kC∂lC

]

= 0.

(3.31)

The antisymmetric tensor field equation (3.17) becomes

δmn∂m

[
e−a(d)φ−dA+d̃B∂ne

C

]
= 2κ2Tdδ

D−d(y), (3.32)

and the dilaton equation (3.18) becomes

δmn∂m

(
edA+d̃B∂nφ

)
− a(d)

2
e−dA+d̃B+2C−a(d)φδmn∂mC∂nC

= a(d)κ2Tde
dA+a(d)φ/2δ(D−d)(y).

(3.33)

Finally, the (d− 1)-brane equation (3.19) becomes

∂m(edA+a(d)φ/2 − eC) = 0. (3.34)

Hence we have five equations for the four unknown functions A, B, C, φ and the unknown

parameter a(d).

The unique solution, assuming that gMN tends asymptotically to ηMN , is given by

A =
d̃

2(d+ d̃)
(C − C0),

B = − d

2(d+ d̃)
(C − C0),

a(d)

2
φ =

a2(d)

4
(C − C0) + C0,

(3.35)

where C0 = aφ0/2 and φ0 is the dilaton vev. C is given by

e−C = e−C0 +
kd

yd̃
, d̃ > 0

= e−C0 − κ2Td

π
ln y, d̃ = 0

(3.36)
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and

kd = 2κ2Td/d̃ Ωd̃+1, (3.37)

where Ωd̃+1 is the volume of Sd̃+1. The parameter a(d) is given by

a2(d) = 4 − 2dd̃

d+ d̃
. (3.38)

Note, incidentally, that for these solutions, the coefficients of the δ-function in (3.30)

and (3.33) vanish at y = 0. So the Einstein equation and the dilaton equation are essentially

source-free; only in the antisymmetric tensor equation is there a δ-function source. We

shall return to this in section 3.4.

A crucial result of this section is that we have fixed the constant a(d) as in (3.38) by

the requirement that our theory (3.3) yield elementary (d− 1)-brane solutions.

The mass per unit (d− 1)-volume of the elementary (d− 1)-brane is given by

Md =

∫
dD−dyθ00, (3.39)

where θMN is the total energy-momentum pseudotensor of the combined gravity-matter

system. We find

Md = Tde
C0 . (3.40)

To compute the electric charge ed of (3.12) it is convenient to introduce polar coordinates

ym = (y, θi), (3.41)

where i = 1, . . . , (d̃+ 1), so that

δmndy
mdyn = dy2 + y2dΩ2

d̃+1
, (3.42)

where dΩ2
d̃+1

is the metric on the unit Sd̃+1. Then we note from (3.29) that

Fyµ1...µd
= − 1

dg
εµ1...µd

∂ye
C , (3.43)

The dual of F, ∗F , has non-vanishing components only in the θi directions

√
−g∗F θ1...θD−d−1 = −(−)(D−d)(d+1)e2C∂ye

−C , (3.44)
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Hence, using (3.22),(3.35)-(3.37), we find

e−aφ∗Fθ1...θD−d−1
= (−)(D−d)(d+1)2κ2Td

εθ1...θD−d−1

Ωd̃+1

. (3.45)

It follows from (3.12) that

ed =
√

2κTd(−)(D−d)(d+1), (3.46)

and hence

Md =
1√
2
| ed | ea(d)φ0/2. (3.47)

Thus we find that the mass and charge obey the same equality as we found for the super-

symmetric solutions of section 2 even though as yet no supersymmetry has been assumed.

This is in fact a consequence of assuming that the ratio of coefficients for the kinetic term

and Wess-Zumino term in the p-brane σ-model are as given in (3.5).

There is a straightforward generalization to exact, stable multi-(d− 1)-brane config-

urations obtained by a linear superposition of the solutions (3.36),

e−C = e−Co +
∑

l

kd

| ~y − ~yl |2
, (3.48)

where ~yl corresponds to the position of each (d− 1)-brane. To see the no-force condition

explicitly, consider the multi-(d−1)-brane configuration (3.48) with, for example,N (d−1)-

branes as sources. In general, we do not have the transverse SO(D−d) symmetry, but we

still have the Pd Poincare symmetry for the configuration (3.48). Let each (d − 1)-brane

with label l satisfy Xµ(l) = ξµ so that, in particular, they all have the same orientation.

The lagrangian for each of the (d− 1)-branes with label l in the fields of the sources given

by (3.21)-(3.24) is, from (3.5)

Ld = −Td

[√
−det(e2A+a(d)φ/dηij + e2B+a(d)φ/d∂iY m(l)∂jYm(l) − eC

]
(3.49)

corresponding to a potential

V = Td(e
dA+a(d)φ/2 − eC), (3.50)

but this vanishes by (3.34). This generalizes to arbitrary d and D the no-force condition

for strings and fivebranes discussed in section 2. Expanding out (3.49) we find

L = −Td

2
e(d−2)A+2B+a(d)φ/2ηij∂iY

m∂jYm + . . . , (3.51)

and so the absence of velocity-dependent forces corresponds to

(d− 2)A+ 2B + a(d)φ/2 = constant, (3.52)

which is indeed satisfied by virtue of (3.35) and we find that the constant is just C0. This

generalizes to arbitrary d and D, the absence of velocity dependent forces for strings and

fivebranes in D = 10 [20].

52



3.4. The solitonic (d̃− 1)-brane

The elementary (d − 1)-branes we have discussed so far correspond to solutions of

the coupled field-brane system with action ID(d) + Sd. As such they exhibit δ-function

singularities at y = 0. They are characterized by a non-vanishing Noether electric charge

ed. By contrast, we now wish to find solitonic (d̃ − 1)-brane, corresponding to solutions

of the source free equations resulting from ID(d) alone, which are regular at y = 0, and

which will be characterized by a non-vanishing topological magnetic charge gd̃. (Recall

that d̃ = D − d− 2).

To this end, we now make an ansatz invariant under Pd̃ ×SO(D− d̃). Hence we write

(3.21) and (3.22) as before where now µ = 0, 1 . . . (d̃ − 1) and m = d̃, d̃ + 1, . . . (D − 1).

The ansatz for the antisymmetric tensor, however, will now be made on the field strength

rather than on the potential. From section 3.2 we recall that a non-vanishing electric

charge corresponds to
1√
2κ
e−aφ∗Fd̃+1 = edεd̃+1/Ωd̃+1, (3.53)

where εd̃+1 is the volume form on Sd̃+1. Accordingly, to obtain a non-vanishing magnetic

charge, we make the ansatz

1√
2κ
Fd+1 = gd̃εd+1/Ωd+1, (3.54)

where εd+1 is the volume form on Sd+1. Since this is an harmonic form, F can no longer

be written globally as the curl of A, but it satisfies the Bianchi identities. It is now not

difficult to show that all the field equations of ID(d) are satisfied simply by making the

replacement d→ d̃, and hence a(d) → a(d̃) = −a(d) in (3.15)-(3.18) with the source terms

set to zero. For future reference we write the explicit solution in the case φ0 = 0

ds2 =

(
1 +

kd̃

yd

)−d/(d+d̃)

dxµdxµ +

(
1 +

kd̃

yd

)d̃/(d+d̃)

dymdym,

e2φ =

(
1 +

kd̃

yd

)a(d)

,

Fd+1 =
√

2κgd̃εd+1/Ωd+1.

(3.55)

Note that by this device, we have found solutions everywhere including y = 0, since the

δ-functions were already absent in the Einstein and dilaton equations.
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It follows that the mass per unit (d̃− 1)-volume now satisfies

Md̃ =
1√
2
| gd̃ | ea(d̃)φ0/2

=
1√
2
| gd̃ | e−a(d)φ0/2.

(3.56)

Note that the φ0 dependence is such that Md̃ is large for small Md and vice-versa.

The electric charge of the elementary solution and the magnetic charge of the soliton

solution obey a Dirac quantization rule [27,28]

edgd̃ = 2πn, n = integer, (3.57)

and hence from (3.46)

(−)(D−d)(d+1)gd̃ = 2πn/
√

2κTd, (3.58)

3.5. Duality

We now wish to consider the theory “dual” to (3.3) for which the roles of field equations

(3.8) and Bianchi identities (3.9) are interchanged. To this end let us write the action

ĨD(d̃) =
1

2κ2

∫
dDx

√−g
(
R − 1

2
(∂φ)2 − 1

2(d̃+ 1)!
ea(d)φF̃ 2

d̃+1

)
, (3.59)

where the rank (d̃+ 1) field strength F̃ is given by

F̃d̃+1 = dÃd̃, (3.60)

a(d) is the same constant as appearing in (3.3) but appears with opposite sign, i.e

a(d̃) = −a(d). (3.61)

Allow these fields to couple to an elementary d̃-dimensional extended object (a“(d̃ − 1)-

brane”) with action

S̃d̃ = Td̃

∫
dd̃ξ

(
− 1

2

√−γγij∂iX
M∂jX

NgMNe
−a(d)φ/d̃ +

(d̃− 2)

2

√−γ

− 1

d̃!
εi1i2...i

d̃∂iX
M1∂i2X

M2 . . . ∂id
XM

d̃ÃM1M2...M
d̃

)
.

(3.62)
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The φ dependence is such that under the rescaling

gMN → λ̃2d̃/(D−2)gMN ,

ÃM1...M
d̃
→ λ̃d̃ÃM1...M

d̃
,

eφ → λ̃−2d̃(D−d̃−2)/(D−2)a(d)eφ,

γij → λ̃2γij ,

(3.63)

both actions scale the same way

ĨD(d̃) → λ̃d̃ID(d),

S̃d̃ → λ̃d̃S̃d̃.
(3.64)

The field equations and Bianchi identities of the Ã field may be written

d∗(ea(d)φF̃ ) = 2κ2(−)d̃2∗J̃ , (3.65)

dF̃ = 0. (3.66)

It should be clear that the system described by ĨD(d̃) + S̃d̃ admit the same elementary

solutions as that described by ID(d) + Sd and that ĨD(d̃) alone admits the same solitonic

solutions as ID(d) alone, provided we everywhere make the replacement d→ d̃ and hence

a(d) → a(d̃) = −a(d). In particular the Noether electric charge is given by

ẽd̃ =
1√
2κ

∫

Sd+1

eaφ∗F̃d+1, (3.67)

and the topological magnetic charge by

g̃d =
1√
2κ

∫

Sd̃+1

F̃d̃+1, (3.68)

and they obey the condition

ẽd̃g̃d = 2πn. (3.69)

So far we have discovered that the equations of ID(d) admit an elementary (d − 1)-

brane solution and a solitonic (d̃ − 1)-brane solution. Conversely, the equations of ĨD(d̃)

admit an elementary (d̃−1)-brane solution and a solitonic (d−1)-brane solution. We now

wish to go a step further and assert that the (d− 1)-brane is “dual” to the (d̃− 1)-brane.

In its strongest sense this means that the two theories are equivalent descriptions of the
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same physics. In the present context, however, we simply make the assumption that the

ID(d) and ĨD(d̃) are equivalent, i.e we assume that the metric gMN and dilaton φ are the

same and that the (d̃+1)-form field strength F̃d̃+1 is dual to the (d+1)-form field strength

Fd+1. More precisely,

F̃d̃+1 = e−a(d)φ∗Fd+1, (3.70)

so that the (source-free) field equations and Bianchi identities of ID(d), (3.8) and (3.9),

become the Bianchi identities and (source-free) field equations of ĨD(d̃), (3.66) and (3.65).

This leads immediately to
ed = g̃d,

gd̃ = ẽd̃,
(3.71)

and hence

κ2TdTd̃ = |n|π. (3.72)

The duality assumption also leads to a relation between the dimensionless loop ex-

pansion parameters of the (d − 1)-brane and the (d̃ − 1)-brane. To see this we note that

metrics appearing naturally in (d− 1)-brane and (d̃− 1)-brane σ-models (3.5) and (3.62)

are

gMN (d) = ea(d)φ/dgMN (canonical), (3.73)

gMN (d̃) = e−a(d)φ/d̃gMN (canonical). (3.74)

If we rewrite ID(d) and ĨD(d̃) in these variables we find

ID(d) =
1

2κ2

∫
dDx

√−ge−(D−2)a(d)φ/2d

[
R

− 1

2

(
1 − a2(D − 1)(D − 2)

2d2

)
(∂φ)2 − 1

2 · (d+ 1)!
F 2

d+1

]
,

(3.75)

and

ĨD(d̃) =
1

2κ2

∫
dDx

√−ge(D−2)a(d)φ/2d̃

[
R

− 1

2

(
1 − a2(D − 1)(D − 2)

2d̃2

)
(∂φ)2 − 1

2(d̃+ 1)!
F̃ 2

d̃+1

]
.

(3.76)

Note that in both cases a common dilaton-dependent factor appears. This reveals that the

(d− 1)-brane loop counting parameter is

gd = e(D−2)a(d)φ0/4d, (3.77)
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and the (d̃− 1)-brane loop counting parameter is

gd̃ = e−(D−2)a(d)φ0/4d̃. (3.78)

Hence

gd
d = 1/gd̃

d̃
, (3.79)

and strongly coupled (d − 1) branes correspond to weakly coupled (d̃ − 1) branes and

vice-versa.

Finally we note that, in the case of d = 2, the following field redefinition

(D − 2)a(2)φ = 8Φ (3.80)

yields from (3.75) an ID(d) which is D-independent, namely

ID(2) =
1

2κ2

∫
dDx

√−ge−2Φ

[
R + 4(∂Φ)2 − 1

2.3!
F 2

3

]
. (3.81)

This is a well-known result in string theory. Curiously, there is no field redefinition which

renders the integrand of ID(d) independent of D for d 6= 2. However, we may dualize

(3.81) to obtain

ĨD(D − 4) =
1

2κ2

∫
dDx

√
−g e4Φ/D−4

[
R− 4(D − 10)

(D − 4)2
(∂Φ)2 − 1

2(D − 3)!
F̃ 2

D−3

]
. (3.82)

In these string variables the metric of the elementary string is given by

ds2 =

(
1 +

k2e
C0

yD−4

)−1

ηµνdx
µdxν + δmndy

mdyn (3.83)

with µ = 0, 1 and m = 1 . . .D − 2. Also

a(2) =

√
8

D − 2
, (3.84)

so

Φ =
1

2
(C − C0) +

D − 2

4
C0, (3.85)

where

e−C = e−C0 +
k2

yD−4
, D > 4

= e−C0 − κ2T2

π
ln y D = 4.

(3.86)
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On the other hand the solitonic (D − 5)-brane is given by

ds2 = ηµνdx
µdxν +

(
1 +

kD−4

y2
eC0

)
δmndy

mdyn, (3.87)

where µ = 0 . . .D − 5 and m = D − 4, . . . , D − 1. Also

a(D − 4) = −
√

8

D − 2
, (3.88)

so

Φ = −1

2
(C − C0) −

(D − 2)

4
C0, (3.89)

where

e−C = e−C0 +
kD−4

y2
. (3.90)

We note that in these string σ-model variables the transverse part of the metric in (3.83)

is flat and the spacetime part of the metric in (3.87) is flat. These are therefore free field

theories from the point of view of conformal field theory.

Having constructed the action in σ-model variables (3.75), it is instructive to compare

it with Brans-Dicke theory. The action for Brans-Dicke gravity (generalized from 4 to D

dimensions) may be written in terms of a scalar field η and some metric gMN (BD)

I(Brans− Dicke) =
1

2κ2

∫
dDx

√−g
[
ηR− ω

η
(∂η)2

]
+

∫
dDxL(matter, g), (3.91)

where ω is a free parameter and where, by construction, L (matter, g) is independent of

η. In comparing this to our general action ID(d) we have to decide what is meant by L
(matter, g). Let us first suppose that this refers not to the antisymmetric tensor action of

(3.3) but to the (d− 1)-brane action Sd of (3.5). Then we must make the identification

gMN (BD) = gMN (d), (3.92)

where gMN (d) is the (d− 1)-brane σ-model metric of (3.73). Comparison with (3.75) then

yields the identifications

η = e−(D−2)a(d)φ/2d, (3.93)

ω =
2d2

(D − 2)2a2(d)
− D − 1

D − 2
= −(D − 1)(d− 2) − d2

(D − 2)(d− 2) − d2
, (3.94)

where we have used å. It is interesting to note, for example, that in D = 10 strings (d = 2)

correspond to ω = −1, fivebranes (d = 6) to ω = 0 and threebranes (d = 4) to ω = ∞.
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3.6. The self-dual string and dyonic string in D = 6

The case D = 6 is special because in this case the theory dual to the superstring is

itself a superstring. The two strings are related by the strong/weak coupling replacement

φ→ −φ. Compare (3.81) with (3.82), which are the bosonic sectors of D = 6 supergravity

and its dual. This permits the construction of a dyonic string which carries both electric

and magnetic charges, which we shall shortly discuss.

However, there is another supersymmetric solitonic string in D = 6: the self-dual

superstring which falls outside our previous discussions and requires a special treatment.

This is the D = 6 counterpart of the self-dual superthreebrane in D = 10 of section 4.

Our starting point is the N = 2, D = 6 self-dual supergravity [57,15] which, in common

with the Type IIB superstring in D = 10 discussed in section 4, admits covariant field

equations, but no manifestly covariant field equations. It describes a graviton eM
A, two

left-handed gravitini ψMa and one tensor field BMN with self-dual field strength GMNP .

The gravitini transformation rules are (in our notation)

δψM = ∇Mε− 1

8
GMNP ΓNP ε. (3.95)

So if we make a two/four split as in section 3.2 with

ΓA = (γα ⊗ 1, γ3 ⊗ Σm), Γ7 = γ3 ⊗ Γ5,

γ3 = γ0γ1, Γ5 = Σ2Σ3Σ4Σ5,
(3.96)

the criterion for unbroken supersymmetry, δψM = 0, reduces to

∂µε−
1

2
γ3γµ ⊗ Σn(∂nA+

1

2
e−2A∂ne

Cγ3)ε = 0,

∂mε+
1

2
∂mBε−

1

2
(δn

m + Σn
m)(∂nB − 1

2
e−2A∂me

Cγ3)ε = 0,

(3.97)

and hence supersymmetry requires

C = 2A, B = −A, ε = e−B/2ε0, (3.98)

where ε0 obeys γ3ε0 = −ε0, and one half of the supersymmetries are broken.

The bosonic equations of motion are

RMN − 1

2
gMNR =

1

4
GM

PQGNPQ (3.99)
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GMNP = −G̃MNP , (3.100)

and substituting (3.98) yields

e6Aδmn∂m∂ne
−2A = 0 (3.101)

for the µν components of the Einstein equation and

e2Aδmn∂m∂ne
−2A = 0 (3.102)

for the mn components, so that

e−2A = 1 +
k2

y2
. (3.103)

All the properties of the dyonic self-dual threebrane [58] to be discussed in section 4 apply,

mutatis mutandis, to the dyonic self-dual string, including Dirac quantization rules and

the saturation of the Bogolmol’nyi bound.

The effective bosonic equations of motion of this string are

∂i(
√−γγij∂jX

NgMN ) − 1

2

√−γγij∂iX
N∂jX

P∂MgNP

=
1

2
GMNP ∂iX

N∂jX
P εij ,

(3.104)

but, since GMNP = −G̃MNP , there is no manifestly covariant worldsheet action. It would

be interesting to include the fermionic degrees of freedom and construct the spacetime

supersymmetric, κ-symmetric, Green-Schwarz string equations, but this has not yet been

done.

We shall now discuss the dyonic string solution [48] of the D = 6 string action (3.81)

and show that in the limit e2 = g2 it reduces to the self-dual string configuration. The

solution is

e−2ΦE = 1 +
k2

y2
, e2ΦM = 1 +

k̃2

y2
,

Φ = ΦE + ΦM ,

ds2 = e2ΦE (−dτ2 + dσ2) + e2ΦM (dy2 + y2dΩ2),

G = 2k̃2ǫ3, G̃ = e−2Φ∗G = 2k2ǫ3,

(3.105)

where k2 = κe2/
√

2Ω3 and k̃2 = κg2/
√

2Ω3. For e2 = g2 (3.105) reduces to the self-

dual string above. However, since the self-dual string was shown above to break 1/2

of the supersymmetries of the self-dual theory, it breaks 3/4 of the supersymmetries of

the non-self-dual theory, a result that can be shown directly from the supersymmetry

transformation rules of the non-self-dual theory even when e2 6= g2 [48]. One recovers 1/2

of the supersymmetries when either e2 or g2 vanishes.
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3.7. Singularity structure and interpolation

In section 2.6, we had shown using test-probe computations and by examining cur-

vature singularities that while the string is a singular solution of string theory and the

fivebrane is a singular solution of fivebrane theory, the string and fivebrane are mutually

nonsingular in the sense that each could be viewed as a nonsingular soliton of the other the-

ory. This symmetry in the singularity structure was used to support the string/fivebrane

duality conjecture. One might naively have expected that this state of affairs would gen-

eralize to arbitrary p-branes and their duals, but in this section we shall show that this is

not the case. We find that only particles and strings are mutually nonsingular with their

duals from the point of view of the test-probe/source approach, even though the absence

of curvature singularities at y = 0 persists for all p.

In probing the singularity structure, we consider the radial trajectory of the (d− 1)-

brane infalling into the dual (d̃− 1)-brane background. We assume that the (d− 1)-brane

and (d̃−1)-brane are nonintersecting, as is generically the case for D = d+d̃+2. As before,

the contribution of the antisymmetric field strength to the worldvolume action vanishes.

The effective action reduces to

L =
√−γ, (3.106)

where γij = gMN∂iX
M∂jX

N is the worldvolume metric and where gMN is the (d̃−1)-brane

metric in the (d− 1)-brane variables and is given by

ds2 = ∆(d)1−2/dηmuνdx
µdxν + ∆(d)−2/dδmndy

mdyn, (3.107)

where ∆(d) = (1+(b/y)d)−1, µ, ν = 0, 1, ..., d̃−1 are (d̃−1)-brane indices, m,n = d̃, ..., D−1

are transverse space indices and y is the radial coordinate in the transverse space. A (d−1)-

brane propagating in this background will in general have n of its d− 1 spatial directions

parallel to the (d̃− 1)-brane and d− n− 1 directions perpendicular to the (d̃− 1)-brane,

where n ≤ n0 = min(d− 1, d̃− 1).

Our criterion for the singularity of the (d̃−1)-brane is as follows: if for some n a (d−1)-

brane test-probe views the singularity at the (d̃− 1)-brane source (i.e. the test-probe falls

into the source in finite proper time) then the (d̃−1)-brane is viewed as a singular solution

of (d − 1)-brane theory. Otherwise, the dual solitons are mutually nonsingular, as was

demonstrated for strings and fivebranes in particular.
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Replacing (3.107) in (3.106) for a given choice of n, the lagrangian reduces in the limit

of radial motion to

L =

√
∆n−1ṫ2 − ∆n−2ẏ2. (3.108)

It follows that

E =
∆n−1 ṫ√

∆n−1ṫ2 − ∆n−2ẏ2
(3.109)

is a constant of the motion. We combine (3.109) with the geodesic condition γ00 = −1 for

massive test-probes, which follows from setting X0 = τ on the worldsheet and compute

the proper time for the radial fall of the test-probe into the dual source to be

τ =

∫ y0

0

dy∆−1/d

√
∆−n+1E2 − 1

, (3.110)

where y0 is the initial radial separation. Note that for n = 0 there is a turning point at

∆(yT ) = E2, so that no singularity can be observed (the force in this case being repulsive).

So without loss of generality, we let n ≥ 1 below. The question of singularity now reduces

to whether or not τ in (3.110) converges or not near y = 0. Convergence of the integral

implies a finite proper time and a singular dual object while divergence implies infinite

proper time and mutual nonsingularity of probe and source. Since ∆ → (y/b)d as y → 0,

it is straightforward to show that finiteness of τ is equivalent to finiteness of

I(d, n) =

∫ y0

0

dyyd(n−1)/2−1. (3.111)

I is finite provided d(n−1)/2 > 0, or n > 1, since d > 0. Since n ≤ n0 = min(d−1, d̃−1),

it follows that I cannot be finite when either of the dual objects is a particle (d = 1) or

a string (d = 2). This means that strings and particles are always mutually nonsingular

with their duals, in whatever spacetime dimension they are embedded. If, however, n0 ≥ 2,

or in other words both p-branes are membranes or higher dimensional objects, then the

choice n = n0 yields finite I and the dual objects are mutually singular. Note that this

analysis does not depend on the spacetime dimension D at all. Also note that in our

earlier analysis for strings and fivebranes we set n = n0, which in view of (3.111) and our

singularity criterion is a consistent choice in the general case (since n = n0 is the case in

which I is “most likely” to converge, and so that if there is a singularity it would certainly

be observed in this case).

62



Next we turn to the question of vacuum interpolation [46]. To determine the asymp-

totic form of the metric of near y = 0 we introduce the new radial coordinate rd = yd +ad

and let

r = b

(
1 +

edρ/b

d

)
. (3.112)

Near r = b we get

ds2 ∼ e(d−2)ρ/b(−dt2 + dx · dx) + dρ2 + b2dΩ2
d+1

φ ∼ −da
2b
ρ

Fd+1 ∼ dbdεd+1.

(3.113)

If d 6= 2 the asymptotic spacetime is (adS)d̃+1 × Sd+1, and there is an event horizon

at r = b. If d = 2 the dual (d̃− 1)-brane interpolates between D-dimensional Minkowski

spacetime and the product of S3 with a (d̃ + 1)-dimensional Minkowski spacetime, gen-

eralizing the case of the D = 10 fivebrane. For these cases the asymptotic behaviour of

the dilaton near the p-brane core can be invariantly characterized as linear in an ignorable

coordinate associated with a space-translation Killing vector.

3.8. Blackbranes

Finally we turn to the two-parameter solitonic solutions of the theory which display

event horizons: the “blackbranes”.

Using the canonical metric, the (d̃ − 1)-brane black soliton solution may be written

for all d̃ ≥ 1 as

ds2 = − ∆+∆
−d̃/(d+d̃)
− dt2

+ ∆−1
+ ∆

a2

2d
−1

− dr2

+ r2∆
a2

2d

− dΩ2
d+1

+ ∆
d

d+d̃

− dxidxi, i = 1 . . . d̃− 1,

e−2φ =∆a
−,

∆± =

[
1 −

(
r±
r

)d]
,

Fd+1 =d(r+r−)d/2εd+1,

(3.114)
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where the magnetic charge gd̃ and the mass per unit (d̃− 1)-volume Md̃ are related to r±

by [59]

gd̃ =
Ωd+1√

2κ
d(r+r−)d/2, (3.115)

and

Md̃ =
Ωd+1

2κ2
[(d+ 1)rd

+ − rd
−]. (3.116)

The solutions possess an R × SO(d + 2) × E(d̃ − 1) symmetry where E(n) denotes the

n-dimensional Euclidean group. The solutions exhibit an event horizon at r = r+ and an

inner horizon at r = r−. The absence of naked singularities, r+ ≥ r−, translates into the

same Bogomol’nyi bound
√

2κMd̃ ≥ |g̃d̃|. In the special case D = 11, d̃ = 3, 6 they reduce

to the black membrane and black fivebrane of [51]. In the special case D = 10 i.e d̃ = 8−d,
they reduce to the black p-brane solutions of [50]. In the special case D = 4, d̃ = 1 they

reduce to the Kaluza-Klein black hole solution of [52,53,54,55]. In the limit of zero charge,

r− = 0, the dilaton and antisymmetric tensor are trivial and the metric reduces to

ds2 = −∆+dt
2 + ∆−1

+ dr2 + r2dΩ2
d+1 + dxidxi. (3.117)

In [60] it was argued that these solutions are classically unstable. More interesting is the

extreme mass = charge limit r+ = r− where the metric component g00 becomes equal

to the one multiplying dxidxi and the symmetry is enlarged to SO(d + 2) × P (d̃). It is

convenient to introduce the change of variables yd = rd − rd
−, then (3.114) becomes

ds2 = ∆
d/(d+d̃)
− dxµdxµ + ∆

−d̃/(d+d̃)
− (dy2 + y2dΩ2

d+1),

e−2φ = ∆−
a,

∆− =

[
1 +

(
r−
y

)d]−1

,

Fd+1 = drd
−εd+1.

(3.118)

But in the case 1 ≤ d ≤ 7, 1 ≤ d̃ ≤ 7, these are precisely the super p-branes, so r+ = r−

also corresponds to the appearance of supersymmetry. It is also possible to find elementary

black (d − 1)-branes with parameters Md and ed obeying the bound
√

2κMd ≥ |ed|, by

including a source term on the right hand side of the equations. In this case however, it

would be necessary to relax the equality of the kinetic and WZW term coefficients in (3.5)

to allow for mass 6= charge. (This equality is forced on us in the supersymmetric case, by

virtue of κ-symmetry [9]).

For specific values of d and D, the extreme solutions also exhibit supersymmetry

and hence stability is guaranteed. Some may be identified with the previously classified

heterotic, Type IIA and Type IIB super p̃-branes. It is to this subject that we now turn.
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4. The brane-scan revisited

4.1. Bose-Fermi matching: a necessary condition

As pointed out in [19], the string configuration of chapter 2 also solves both the Type

IIA and Type IIB supergravity equations. Once again, each breaks half of the spacetime

supersymmetries. As discussed in section 4.3, the Type IIA solution may be shown to

follow by simultaneous dimensional reduction of the D = 11 supermembrane of section 4.2

The N = 1 solution of section 2.1 then follows by truncation. Together with the N = 1

fivebrane of section 2.4, all these solutions correspond to known points on the brane-scan

of supersymmetric extended objects classified in [10] and discussed in the Introduction.

According to this classification, no Type II fivebranes (or indeed any Type II p-branes with

p > 1) could exist. However, it was pointed out in [32] that the fivebrane configuration

of chapter 2 also solves both the Type IIA and Type IIB supergravity equations and

hence that Type II superfivebranes exist after all. Moreover, the Type IIB theory also

admits a self-dual superthreebrane [58]. The no-go theorem is circumvented because in

addition to the superspace coordinates XM and Θα there are also higher spin fields on the

worldvolume: vectors or antisymmetric tensors. This raises the question: are there other

super p-branes and if so, for what p and D?

We begin by asking what new points on the brane-scan are permitted by bose-fermi

matching alone. There are surprisingly few: p = 5 in D = 11; p = 3, 4, . . .9 in D = 10;

p = 3, 4, 5 in D = 6 and p = 3 in D = 4. The much harder task is to narrow down

these possibilities to objects that actually exist. One obvious handicap is that, unlike the

p-branes discussed in [10] and in the Introduction, no-one has yet succeeded in writing

down the action for these new Type II p-branes. The existence of the p = 3 and p = 5

objects mentioned above was established indirectly: by showing that they emerge as soliton

solutions of either Type IIA or Type IIB supergravity. The nature of the worldvolume fields

is then established by studying the zero modes of the soliton. In particular, a super p-brane

requires that the soliton solution preserves some unbroken supersymmetry and hence that

the zero modes form a supermultiplet. Although we know of no general proof that all

supersymmetric extended objects correspond to a soliton, this is true of all those on the
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old brane-scan and thus seems a good guide to constructing the new one. Following this

route we shall conclude that of all the possible D = 10 Type II super p-branes permitted

by bose-fermi matching alone, only those with p = 0 (Type IIA), p = 1 (Type IIA and

IIB), p = 3 (Type IIB), p = 4 (Type IIA) p = 5 (Type IIA and IIB) and p = 6 (Type IIA)

actually exist. [The reader may wonder why there seems to be a gap at p = 2. Indeed,

duality would seem to demand that in D = 10 a Type IIA superfourbrane should imply

a Type IIA supermembrane. This object does indeed exist but it should not be counted

as a new theory since vectors are dual to scalars in d = 3 and so its worldvolume action

is simply obtained by dualizing one of the 11 XM of the D = 11 supermembrane.] Our

results thus confirm the conjecture of [50] that super Type II p-brane solitons in D = 10

exist for all 0 ≤ p ≤ 6.

Given that the gauge-fixed theories display worldvolume supersymmetry, and given

that we now wish to include the possibility of vector (and/or antisymmetric tensor) fields,

it is a relatively straightforward exercise to repeat the bose-fermi matching conditions of

the Introduction for vector (and/or antisymmetric tensor) supermultiplets. Once again,

we may proceed in one of two ways. First, given that a worldvolume vector has (d − 2)

degrees of freedom, the scalar multiplet condition (1.40) gets replaced by

D − 2 =
1

2
mn =

1

4
MN. (4.1)

Alternatively, we may simply list all the supermultiplets in the classification of [35] and

once again interpret D via (1.42). The results are shown in Fig. 2.

Several comments are now in order:

1) Vector supermultiplets exist only for 4 ≤ d ≤ 10 [35]. In d = 3 vectors have only

1 degree of freedom and are dual to scalars. So these multiplets will already have

been included as scalar multiplets in section 1. In d = 2, vectors have no degrees of

freedom.

2) The number of scalars in a vector supermultiplet is such that, from (1.42), D = 4, 6

or 10 only, in accordance with (4.1).

3) One must now repeat the analysis for antisymmetric tensors to see if any new points

are introduced on the scan. For example in d = 6 there is a chiral (2, 0) tensor super-

multiplet, with a second rank tensor whose field strength is self-dual: (B−
µν , λ

I , φ[IJ ]),

I = 1, . . . , 4, corresponding to the Type IIA fivebrane and a non-chiral (1, 1) vector

multiplet (Bµ, χ
I , AJ

I , ξ), I = 1, 2, corresponding to the Type IIB fivebrane [32,33].
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However, both occupy the same (d = 6, D = 10) slot in Fig. 2. Nevertheless, there

is a new point on the scan, (d = 6, D = 11), namely the D = 11 superfivebrane, the

corresponding d = 6 supermultiplet being identical to that of the Type IIA fivebrane.

This last observation corrects an omission in [61].∗

4) We emphasize that Fig. 2 merely tells us what is allowed by bose/fermi matching.

We must now try to establish which of these possibilities actually exists.

All of the circles on the brane-scan are known to correspond to soliton solutions

of an underlying supersymmetric field theory [8,18,19,24,23,29,30]. As for the crosses,

supersymmetric soliton solutions of both Type IIA and Type IIB supergravity have been

found for the case (d = 6, D = 10) [32] and of Type IIB for (d = 4, D = 10) [58] and of

N = 1 supergravity for the case (d = 6, D = 11) [51]. What about the others? In the next

section we shall show that in D = 10 they exist for worldvolume dimensions d = 1 (Type

IIA), d = 2 (Types IIA and IIB), d = 3 (Type IIA), d = 4 (Type IIB), d = 5 (Type IIA),

d = 6 (Types IIA and IIB) and d = 7 (Type IIA).

d d̃ α(d) A B φ

1 7 −3/2 7C/16 −C/16 −3C/4

2 6 1 3C/8 −C/8 C/2

3 5 −1/2 5C/16 −3C/16 −C/4
4 4 0 C/4 −C/4 0

5 3 1/2 3C/16 −5C/16 C/4

6 2 −1 C/8 −3C/8 −C/2
7 1 3/2 C/16 −7/16 3C/4

Table 2. The functions A, B and φ in terms of C as demanded by supersymmetry.

4.2. Type II (d− 1)-branes

Let us begin in D = 10 with Type IIA supergravity, whose bosonic action is given by

I10(IIA) =
1

2κ2

∫
d10x

√−g
[
R − 1

2
(∂φ)2 − 1

2.3!
e−φF3

2

− 1

2.2!
e3φ/2F2

2 − 1

2.4!
eφ/2F ′

4
2

]

− 1

4κ2

∫
F4 ∧ F4 ∧A2,

(4.2)

∗ We are grateful to Paul Townsend for pointing this out.
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where

F ′
4 = dA3 + A1 ∧ F3. (4.3)

From (3.38) we see that the kinetic terms for gravity, dilaton and antisymmetric tensors are

also correctly described by the generic action I10(d) of (3.3) with d = 1, 2, 3 (i.e d̃ = 7, 6, 5).

Both the elementary string (d = 2) and fivebrane (d = 6) solutions of N = 1 supergravity

described above continue to provide solutions to Type IIA supergravity, as may be seen

by setting F2 = F4 = 0. [This observation is not as obvious as it may seem in the case

of the elementary fivebranes or solitonic strings, however, since it assumes that one may

dualize F3. Now the Type IIA action follows by dimensional reduction from the action

of D = 11 supergravity which contains F4. There exists no dual of this action in which

F4 is replaced by F7 essentially because A3 appears explicitly in the Chern-Simons term

F4∧F4 ∧A3 [62]. Since F4 and F3 in D = 10 originate from F4 in D = 11, this means that

we cannot simultaneously dualize F3 and F4 but one may do either separately.† By partial

integration one may choose to have no explicit A3 dependence in the Chern-Simons term of

(4.18) or no explicity A2 dependence, but not both.] Furthermore, by setting F2 = F3 = 0

we find elementary membrane (d = 3) and solitonic fourbrane (d̃ = 5) solutions, and then

by dualizing F4, elementary fourbrane (d = 5) and solitonic membrane (d̃ = 3) solutions.

Finally, by setting F3 = F4 = 0, we find elementary particle (d = 1) and solitonic sixbrane

(d̃ = 7) solutions and then by dualizing F2, elementary sixbrane (d = 7) and solitonic

particle (d̃ = 1) solutions.

Next we consider Type IIB supergravity in D = 10 whose bosonic sector consists of

the graviton gMN , a complex scalar φ, a complex 2-form A2 (i.e with d = 2 or, by duality

d = 6) and a real 4-form A4 (i.e with d = 4 which in D = 10 is self-dual). Because of this

self-duality of the 5-form field strength F5, there exists no covariant action principle of the

kind (3.3) and, strictly speaking, our previous analysis ceases to apply. Nevertheless we

can apply the same logic to the equations of motion and we find that the solution again

falls into the generic category (3.35)-(3.38). First of all, by truncation it is easy to see that

the same string (d = 2) and fivebrane (d = 6) solutions of N = 1 supergravity continue to

solve the field equations of Type IIB. On the other hand, if we set to zero F3 and solve

the self-duality condition F5 = −∗F5 then we find the special case of (3.35) with d = d̃ = 4

and hence α = 0 and φ = 0. This is the self-dual superthreebrane [58] discussed in more

detail below.

† We are grateful to H. Nishino for this observation.
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All of the above elementary and solitonic solutions satisfy the mass = charge conditions

(3.47) and (3.56). Our next task is to check for supersymmetry. We begin by making

the same ansatz as in section 3.3, namely (3.21)-(3.23) but this time substitute into the

supersymmetry transformation rules rather than the field equations, and demand unbroken

supersymmetry. This reduces the four unknown functions A, B, C and φ to one. We then

compare the results with the known solutions.

For Type IIA supergravity with vanishing fermion background, the gravitino trans-

formation rule is

δψM = Dmε+
1

64
e3φ/4(ΓM

M1M2 − 14δM
M1ΓM2)Γ11εFM1M2

+
1

96
e−φ/2(ΓM

M1M2M3 − 9δM
M1ΓM2M3)Γ11εFM1M2M3

+
i

256
eφ/4(ΓM

M1M2M3M4 − 20

3
δM

M1ΓM2M3M4)εFM1M2M3M4
,

(4.4)

and the dilatino rule is

δλ =
1

4

√
2 DMφΓMΓ11ε+

3

16

1√
2
e3φ/4ΓM1M2εFM1M2

+
1

24

i√
2
e−φ/2ΓM1M2M3εFM1M2M3

− 1

192

i√
2
eφ/4ΓM1M2M3M4εFM1M2M3M4

,

(4.5)

where ΓM are the D = 10 Dirac matrices, where the covariant derivative is given by

DM = ∂M +
1

4
ωMABΓAB (4.6)

with ωMAB the Lorentz spin connection, where

ΓM1M2...Mn = Γ[M1ΓM2 . . .ΓMn] (4.7)

and where

Γ11 = iΓ0Γ1 . . .Γ9. (4.8)

Similarly the Type IIB rules are

δψM = DMε+
i

4 × 480
ΓM1M2M3M4ΓMεFM1M2M3M4

+
1

96
(ΓM

M1M2M3 − 9δM
M1ΓM2M3)ε∗FM1M2M3

(4.9)
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and

δλ = iΓMε∗PM − 1

24
iΓM1M2M3εFM1M2M3

, (4.10)

where

PM = ∂Mφ/(1 − φ∗φ). (4.11)

In the Type IIB case, ε is chiral

Γ11ε = ε. (4.12)

The requirement of unbroken supersymmetry is that there exist Killing spinors ε for

which both δψM and δλ vanish. Substituting our ansatze into the transformation rules

we find that for every 1 ≤ d ≤ 7 there exist field configurations which break exactly half

the supersymmetries. This is just what one expects for supersymmetric extended object

solutions [8,18,19,24,23,29] and is intimately related to the κ-symmetry discussed in the

Introduction and the Bogomoln’yi bounds. The corresponding values of A, B and φ in

terms of C are given in Table 2. The important observation, from (3.35), is that the values

required by supersymmetry also solve the field equations. Thus in addition to the D = 10

super (d−1) branes already known to exist for d = 2 (Heterotic, Type IIA and Type IIB),

d = 4 (Type IIB only) and d = 6 (Heterotic, Type IIA and Type IIB), we have established

the existence of a Type IIA superparticle (d = 1), a Type IIA supermembrane (d = 3), a

Type IIA superfourbrane (d = 5) and a Type IIA supersixbrane (d = 7).

It is perhaps worth saying a few more words about the self-dual superthreebrane. By

virtue of the (anti) self-duality condition F5 = −∗F5, the electric Noether charge coincides

with the topological magnetic charge

e4 = −g4. (4.13)

(Note that such a condition is possible only in theories allowing a real self-duality condition

i.e. in 2 mod 4 dimensions, assuming Minkowski signature. The self-dual string of section

3.6 is another example.) The usual Dirac quantization rule for (d− 1) branes (3.57) may,

following [63,64,65], be generalized to dyons carrying both electric and magnetic charges.

In D spacetime dimensions, a (d − 1)-brane with charges (e1d, g1d̃) is related to another

with charge (e2d, g2d̃) by

e1dg2d̃ − e2dg1d̃ = 2πn. (4.14)

Note, however, that this by itself says nothing about the quantization of the product

e1dg1d̃. (Witten [66] has provided such a dyon quantization rule, but it requires either
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T invariance, which is violated by the self-duality condition, or else an action principle,

which is also absent for Type IIB supergravity.) So we cannot combine (4.13) and (4.14)

to obtain e4 and g4 as pure numbers.

Finally we count bosonic and fermionic zero modes. We know that one half of the

supersymmetries are broken, hence we have 16 fermionic zero modes. Regrouping these

16 fermionic zero modes, we get four Majorana spinors in d = 4. Hence the d = 4

worldvolume supersymmetry is N = 4. Worldvolume supersymmetry implies that the

number of fermionic and bosonic on-shell degrees of freedom must be equal, so we need

a total of eight bosonic zero modes. There are the usual six bosonic translation zero

modes, but we are still short of two. The two extra zero modes come from the excitation

of the complex antisymmetric field strength GMNP . The equation of motion for small

fluctuations of the two-form potential b in the soliton background is

DPGMNP = − i

6
FMNPQRG

PQR. (4.15)

This is solved by

b = eik·xE ∧ de2A, (4.16)

G = db+ i ∗ (db), (4.17)

where k is a null vector in the two Lorentzian dimensions tangent to the worldvolume. E

is a constant polarization vector orthogonal to k but tangent to the worldvolume and ∗
the Hodge dual in the worldvolume directions. Although G is a complex tensor, the zero-

modes solution gives only one real vector field on the worldvolume which provides the other

two zero modes. These two zero modes turn out to be pure gauge at zero worldvolume

momentum. Together with the other zero modes, these fields make up the d = 4, N = 4

matter supermultiplet (Aµ, λ
I , φ[IJ ]).

Note that in the self-dual case the condition (3.79) simply becomes

gd
d = 1/gd

d = 1. (4.18)

We note as in [50] that, by virtue of its dimensionality, this self-dual threebrane comes

closest to realizing the old idea of “spacetime as a membrane”.

We have classified all supersymmetric extended objects in D = 10 that correspond to

solitons of a Poincaré supersymmetric field theory in the usual spacetime signature which

break half the spacetime supersymmetries. We cannot at the present time rigorously rule
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out the existence of other super p-branes which do not correspond to solitons. However,

we regard their existence as unlikely. Further progress would require that we construct the

spacetime Green-Schwarz supersymmetric and κ-symmetric actions for these new Type II

p-branes and, to date, this has not been done. All we know is that, in a physical gauge, the

worldvolume theory corresponding to the zero modes of the soliton is described by vector

or antisymmetric tensor supermultiplet as in Table 3.

d = 7 Type IIA (Aµ, λ, 3φ) n = 1

d = 6 Type IIA (B−
µν , λ

I , φ[IJ ]) I = 1, . . . , 4 (n+, n−) = (2, 0)

Type IIB (Bµ, χ
I , AI

J , ξ) I = 1, 2 (n+, n−) = (1, 1)

d = 5 Type IIA (Aµ, λ
I , φ[IJ ]|) I = 1, . . . , 4 n = 2

d = 4 Type IIB (Bµ, χ
I , φ[IJ ]) I = 1, . . . , 4 n = 4

d = 3 Type IIA (χI , φI) I = 1, . . . , 8 n = 8

d = 2 Type IIA (λL
I , φL

I) I = 1, . . . , 16 (n+, n−) = (16, 0)

Type IIB (χI
L, φL

I), (χI
R, φ

I
R) I = 1, . . . , 8 (n+, n−) = (8, 8)

Table 3: Gauge-fixed theories on the worldvolume, corresponding to the zero modes of the

soliton, are described by the above supermultiplets.

In our classification, we have also omitted supersymmetric solitons which break more

than half the supersymmetries since these solutions presumably admit no κ-symmetric

Green-Schwarz action (at least, not of the kind presently known). Examples of this are

provided by the D = 10 double-instanton string of [67] (which breaks 3/4), the D = 10

octonionic string of [68] (which breaks 15/16), and the D = 11 extreme black fourbrane of

[69] and extreme black sixbrane of [51] (which break 3/4 and 7/8, respectively).

Finally, we ask what are the implications of our results for the idea of duality, in the

sense that one theory is simply providing a dual description of the same physics of another

theory with the weak-coupling regime of one being the strong-coupling of the other? At

the classical level discussed in this section, we see that in D = 10 supersymmetry has

narrowed down the possibilities to just four, namely particle/sixbrane duality (Type IIA

only), string/fivebrane duality (Heterotic, Type IIA or Type IIB), membrane/fourbrane

duality (Type IIA only) and threebrane self-duality (Type IIB only).

Although strictly speaking D = 11 lies outside the realm of superstring theory, the

D = 11 supersymmetric extended objects serve the purpose of completing the brane-scan

and of illustrating the utility of simultaneous dimensional reduction. Before turning our
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attention to N = 1, D = 11 supergravity, however, it is convenient to make the replacement

(3.35) in (3.75) so that

ID(d) =
1

2κ2

∫
dDx

√
−ge−(D−2)a2C/4d

[
R

− a2

8

(
1 − a2(D − 1)(D − 2)

2d2

)
(∂C)2 − 1

2 · (d+ 1)!
F 2

d+1

]
,

(4.19)

where we have set C0 = 0 for simplicity. If we now focus on the case (D = 11, d = 3) we

find from (3.38) that

a(3) = 0, (4.20)

and hence

I11(3) =
1

2κ2

∫
d11x

√
−g
[
R − 1

2.4!
F 2

4

]
. (4.21)

This is to be compared with the bosonic sector of D = 11 supergravity

I(D = 11SUGRA) =
1

2κ2

∫
d11x

√
−g
[
R− 1

2.4!
F 2

4

]
+

1

12κ2

∫
F4 ∧ F4 ∧A3. (4.22)

As discussed above, there is no dualized form of this action since A3 enters explicitly. We

can however find an elementary membrane solution. Once again, this is just the d = 3,

d̃ = 6, a(3) = 0 special case of our general solutions (3.35)-(3.38). This is the solution

of [23] which breaks half the supersymmetries and corresponds to the eleven-dimensional

supermembrane of [9], for which there is a covariant κ-symmetric Green-Schwarz action.

This theory also exhibits a soliton solution which is the d̃ = 6, d = 3 superfivebrane of [51],

for which no such Green-Schwarz action is known.

4.3. Simultaneous dimensional reduction

Simple dimensional reduction allows us to derive the actions ID(d) and Sd for a (d−1)-

brane moving in aD-dimensional spacetime from the actions ID+1(d) and Sd corresponding

to a (d− 1)-brane in a (D + 1)-dimensional spacetime. This corresponds to

D + 1 → D,

d→ d,

d̃+ 1 → d̃,

(4.23)
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and takes us vertically on the brane-scan. Double dimensional reduction [70], on the

other hand, allows us to derive the actions ID(d) and Sd for a (d − 1)-brane moving in

D-dimensional spacetime from the actions ID+1(d+ 1) and Sd+1. This corresponds to

D + 1 → D,

d+ 1 → d,

d̃→ d̃,

(4.24)

and takes us diagonally on the brane-scan. The first example of this was to rederive the

Type IIA superstring in D = 10 from the supermembrane in D = 11 [70]. This process

thus allows us, for example, to rederive the elementary string of section 2.1 in D = 10 from

the D = 11 supermembrane discussed above.

To see how it works in general, let us denote all (D+ 1, d+ 1)-dimensional quantities

by a hat and all (D, d) dimensional quantities without. Then with

X̂M̂ = (XM , Xd), M = 0, 1, . . . , (d− 1), (d+ 1), . . . , D − 1

ξ̂µ̂ = (ξi, ξd),
(4.25)

double dimensional reduction consists in setting

ξd = Xd, (4.26)

taking Xd to be the coordinate on a circle of radius R, and discarding all but the zero

modes. In practice, this means taking the background fields φ̂, ĝM̂N̂ and ÂM̂N̂...M̂d
to be

independent of Xd. To recover Sd, with only background fields φ, gMN and AM1M2...Md−1
,

a further truncation is necessary. Specifically we write

ĝM̂N̂ (σ − model) = e−2βφ/d+1

(
gMN (σ − model) 0

0 e2βφ

)
, (4.27)

where β is a, for the moment, arbitrary constant and

Â012...d+1 = A012...d, (4.28)

with other components set to zero. The condition (4.27) ensures from (3.20) that

√
−γ̂ =

√
−γ (4.29)
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and hence, together with condition (4.28), we recover the correct σ-model action for Sd−1

starting from Ŝd provided

2πRT̂d+1 = Td. (4.30)

We fix β and the relation between φ̂ and φ by requiring that we obtain the correct back-

ground field action ID(d) starting from ID+1(d+ 1). So from (3.75)

e−(D−1)âφ̂/2(d+1)
√
−ĝ
[
R̂ − 1

2

(
1 − â2(D(D − 1)

2(d+ 1)2

)
(∂φ̂)2

]

= e−(D−2)aφ/2d√−g
[
R− 1

2

(
1 − a2(D − 1)(D − 2)

2d2

)
(∂φ)2

]
,

(4.31)

which gives

φ̂ = δφ,

(D − 1)â

2(d+ 1)
δ =

(D − 2)a

2d
− d̃β

d+ 1
,

1 − a2(D − 1)(D − 2)

2d2
= δ2

(
1 − â2D(D − 1)

2(d+ 1)2

)

− 4β
d̃+ 1

d+ 1

(D − 2)a

2d

+ 2β2D(D − 1) − 2(d+ 1)(d̃+ 1)

(d+ 1)2
,

(4.32)

and hence

β =
2

da
, (4.33)

δ =
â

a
(4.34)

from solving eqs. (4.32). We also require

κ̂2 = 2πRκ2. (4.35)

Note that the Dirac quantization rule (3.72) involving κ2 and T follows from that involving

κ̂2 and T̂ on using (4.30) and (4.35). In canonical variables, we have

ĝMN (canonical) = e−2d̃φ/a(d)(d+d̃)(d+1+d̃)gMN (canonical),

ĝdd(canonical) = e2d̃φ/(d+1+d̃)a(d).
(4.36)
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As an application of simultaneous dimensional reduction, we may derive the elemen-

tary string solution in D = 10 from the D = 11 membrane solution of [23]. The D = 10

fields gMN , AMN and φ are given by

ĝMN = e−φ/6gMN (canonical),

ĝ22 = e4φ/3,

Â012 = A01.

(4.37)

[Curiously, the metric ĝMN in (4.37) bears the same relation to gMN (canonical) as does

the fivebrane σ-model metric in (3.74) since a(d = 2) = 1 and d̃ = 6. This phenomenon

happens in general whenever â = 0 i.e for (d+1 = 3, d̃ = 6), (d+1 = 4, d̃ = 4) and (d+1 =

6, d̃ = 3)]. Similarly starting from the sixbrane in D = 10 we may proceed diagonally

down the brane-scan to a particle in d = 4. It is not difficult to show that the solutions so

obtained will continue to preserve exactly one half of the supersymmetries. Starting from

the d ≤ 7 solutions in D = 10 we can thus fill out the triangle of supersymmetric extended

objects shown in Fig. 3. At first sight, this seems to contradict Fig. 2 since solutions

appear where no supermultiplet is allowed. The resolution is simply that only the cases

d = 1, 3, 4, 5, 6 and 7 in D = 10 are fundamental. All the others are obtained by simply

dimensional reduction of these or the D = 11 supermembrane, and are thus described by

the same gauge-fixed action.

Finally, it is shown in [45] that in the special cases d̃ = 3, d = 6; d̃ = 6, d = 3

and d̃ = 4, d = 4 (all of which, as remarked above, have a = 0) the endpoints of the

interpolation, namely Minkowski space MD at y = ∞ and (AdS)d̃+1 × Sd+1 at y = 0, are

maximally supersymmetric.
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5. Heterotic strings and fivebranes in D=10

5.1. Inclusion of Yang-Mills fields

In this section we focus on soliton solutions of the heterotic string [25]. Of particular

importance is the heterotic fivebrane of [24], which did much to lend credence to the

conjecture of string/fivebrane duality [17],[24]. The field theory limit of the heterotic

string is the 2-form version of D = 10 supergravity coupled to either E8 × E8 or SO(32)

super Yang-Mills. Including the Lorentz Chern-Simons term, which follows from stringy

corrections [71], the bosonic sector of the action in string σ-model variables is [12,13]

I10(heterotic) =
1

2κ2

∫
d10x

√
−ge−2φ

(
R+ 4(∂φ)2 − 1

2 · 3!
H2 +

α′

8

(
trR̂2 − trF 2

))
,

(5.1)

where R̂, the curvature generated by the generalized connection

Ω±M
AB = ωM

AB ± 1

2
HM

AB , (5.2)

where ωM
AB is the usual spin-connection, is explicitly given by

R̂I
JKL = RI

JKL ∓ 1

2

(
∇LH

I
JK −∇KH

I
JL

)
+

1

4

(
HM

JKH
I
LM −HM

JLH
I
KM

)
. (5.3)

dH now obeys the Bianchi identity modified by Chern-Simons terms †

dH =
α′

4

(
trR̂2 − trF 2

)
. (5.4)

The trace is in the fundamental representation in the case of SO(32) and is defined to be

1/30 times the trace in the adjoint representation in the case of E8 × E8.

We begin in section 5.2 with a review of the ’t Hooft ansatz for the Yang-Mills instan-

ton [74–77] and then turn to the analogous axionic instanton solution discussed in [78,79].

The generalized curvature of this and all other “fivebrane ansatz” solutions possesses a

† The normalization used below follows that of [72,73], and differs from that of [24] by

a factor of 8. This discrepancy was first brought to our attention by Paul Townsend.
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(anti) self-dual structure similar to that of the ’t Hooft ansatz, albeit in the gravitational

sector of the string.

In section 5.3 we write down the perturbative “gauge” heterotic soliton solution of [24]

and the “symmetric” solution of [32,33], which generalizes the axionic instanton and the

gauge solution to a heterotic multi-fivebrane solution with a YM instanton in the gauge

sector and an axionic instanton in the gravitational sector in the four-dimensional space

transverse to the fivebrane We also discuss the zero modes of these solutions.

In section 5.4 we write down the string soliton solution of [30], which extends the

heterotic string soliton solution of chapter 2 to incorporate a Yang-Mills field with eight-

dimensional instanton structure. In section 5.5 we summarize the octonionic string soliton

of [68] and the double-instanton string solution of [67].

5.2. ’t Hooft ansatz and the axionic instanton

Consider the four-dimensional Euclidean action

S = − 1

2g2

∫
d4ytrFmnF

mn, m, n = 1, 2, 3, 4. (5.5)

For gauge group SU(2), the fields may be written as Am = (g/2i)σaAa
m and Fmn =

(g/2i)σaF a
mn (where σa, a = 1, 2, 3 are the 2× 2 Pauli matrices). The equation of motion

derived from this action is solved by the ’t Hooft ansatz [74–77]

Amn = iΣmn∂n ln f, (5.6)

where Σmn = ηimn(σi/2) for i = 1, 2, 3, where

ηimn = −ηinm = ǫimn, m, n = 1, 2, 3,

= −δim, n = 4
(5.7)

and where f−1 f = 0. The above solution obeys the self-duality condition

Fmn = F̃mn =
1

2
ǫmn

pqFpq. (5.8)

The ansatz for the anti-self-dual solution Fmn = −F̃mn is similar, with the δ-term in (5.7)

changing sign. To obtain a multi-instanton solution, one solves for f in the four-dimensional

space to obtain

f = 1 +
k∑

i=1

ρ2
i

|~y − ~ai|2
, (5.9)
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where ρi is the instanton scale size, ~ai the location in four-space of the ith instanton and

k =
1

16π2

∫

M4

trF 2 (5.10)

is the instanton number. Note that this solution has 5k parameters, while the most general

(anti) self-dual solution has 8k parameters, or 8k − 3 if one excludes the 3 zero modes

associated with global SU(2) rotations. We do not exclude these modes, however, because

as explained below, they belong to the same supermultiplet as the dilatational zero mode.

Now consider the ansatz

gmn = e2φδmn m,n = 6, 7, 8, 9,

gµν = ηµν µ, ν = 0, 1, 2, 3, 4, 5,

Hmnp = ±2ǫmnpk∂
kφ m, n, p, k = 6, 7, 8, 9.

(5.11)

Then provided e−2φ e2φ = 0, (5.11) is a solution to the low-energy string effective action

(3.81) written in terms of string σ-model variables (where here F3 = H), and which breaks

1/2 the spacetime supersymmetries. In particular, for

e2φ = e2φ0

(
1 +

N∑

i=1

ρ2
i

|~y − ~ai|2

)
, (5.12)

we recover the multi-fivebrane solution of section 2.4. The ansatz (5.11) in fact possesses

a (anti) self-dual structure in the transverse space (6789), which can be seen by expressing

the generalized curvature in covariant form in terms of the dilaton field as [79]

R̂i
jkl = δil∇k∇jφ− δik∇l∇jφ+ δjk∇l∇iφ− δjl∇k∇iφ± ǫijkm∇l∇mφ∓ ǫijlm∇k∇mφ.

(5.13)

It easily follows that [80]

R̂i
jkl = ∓1

2
ǫkl

mnR̂i
jmn. (5.14)

So the (anti) self-duality appears in the gravitational sector of the string in terms of its

generalized curvature thus justifying the name “axionic instanton” for the four-dimensional

solution first found in [78].
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5.3. The heterotic fivebrane as a soliton: “gauge” versus “symmetric”

In terms of string σ-model variables, (2.5) and (2.6) are rewritten as

δλ = − 1

2
√

2
ΓM∂Mφε+

1

2 · 2
√

2 · 3!
ΓMNPHMNP ε = 0, (5.15)

δψM = ∂Mε+
1

4
Ω−M

ABΓABε = 0. (5.16)

For nontrivial Yang-Mills field, the gaugino χ supersymmetry transformation for zero Fermi

fields is given by

δχ = FMNΓMNε = 0, (5.17)

which is solved [24] by setting Fµν = Fµm = 0 and keeping just an SU(2) subgroup of

the gauge group and identifying the corresponding gauge field in the transverse directions

with the instanton configuration (5.8) for

ε = ǫ0 ⊗ η0, (5.18)

where

(1 − γ7)ǫ0 = 0, (1 − Γ5)η0 = 0. (5.19)

This can be seen explicitly from

δχ =FMNΓMNε

=FmnΣmnε

=
1

2
FmnΣmn(1 − Γ5)ε

=0,

(5.20)

where we have used the identity 1
2 ǫmn

pqΣpq = −Γ5Σmn. In a similar manner, the equations

(5.15) and (5.16) for the ansatz (5.11) and constant chiral spinor (5.18) reduce to

Ω−M
ABΓABε = 0, (5.21)

which is solved precisely because of the self-duality relation

Ω−M
mn =

1

2
ǫmn

pqΩ−M
pq (5.22)

of the generalized connection. The condition (5.19) once again means that one half of the

supersymmetries are broken. The generalized connection Ω−M
ab lies in the same SU(2)
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subgroup of SO(4) as Fmn does. Note that we have still not specified the dilaton field,

which will be determined from the Bianchi identity (5.4).

It is at this stage that we may proceed in one of two directions, depending on whether

we consider the pure supergravity theory or whether we include the stringy Lorentz Chern-

Simons correction. The first route (which we shall shortly justify) leads to the ‘gauge”

solution of [24], while the second route leads to the “symmetric” solution of [32,33]. In

the first case, using TrE8
T aT b ( adjoint) = 15TrSU(2)T

aT b (adjoint) as given in [81] and

substituting a single instanton (5.8) with scale size ρ, the Bianchi identity (5.4) reduces

for the ansatz (5.11) to

e2φ = −α′ 24ρ4

(r2 + ρ2)4
e3φ0/2, (5.23)

which gives

e2φ = e2φ0 + α′ r
2 + 2ρ2

(r2 + ρ2)2
e3φ0/2. (5.24)

In analogy with the comparison between the t’Hooft-Polyakov monopole and Dirac’s mag-

netic monopole, the large-distance behavior of the gauge heterotic fivebrane is the same

as that of the elementary fivebrane. Therefore, we expect that the Bogomol’nyi bound is

also saturated since the mass and the charge depend only on the large distance behavior of

the solution. This is indeed the case [24]. For a general instanton solution, the magnetic

charge is given by

g6 =
1√
2κ

∫

S3

H =

√
2α′kΩ3

κ
, (5.25)

where k is defined in (5.10). Using α′ = 1/2πT2 and comparing (5.25) with (2.54), we find

that the integer in the Dirac quantization rule is given by n = k. This implies in particular

that the single-instanton solution yields a heterotic fivebrane with a tension equal to that

of the fundamental fivebrane.

If one keeps the trR̂2 term, the so-called “symmetric” solution arises [32,33]. This can

be seen by equating the generalized connection Ω±M to the gauge connection AM [82] so

that the corresponding curvature R̂(Ω±) cancels against the Yang-Mills field strength F

and (5.4) reduces to dH = 0, which then implies e−2φ e2φ = 0 and (5.13) and (5.14). It

then follows that the solution satisfies

Fpq
mn = R̂pq

mn, (5.26)

where both F and R are (anti)self-dual. We shall argue in section 8 that this solution is

exact since AM = Ω±M implies that all the higher order corrections vanish. The solution
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is now given by (5.11) with e2φ = e2φ0f , where f is given by (5.9), but where from the

Dirac quantization condition it follows that ρ2
i = e−φ0/2niα

′. For this solution, then, the

curvature R̂ is of the same order in α′ as F and cannot be dropped in a perturbative

approximation. By contrast, had we included the trR̂2 term when solving for the gauge

fivebrane, we would have found that trR2 vanishes and hence that trR̂2 is higher order in

α′ [24].

We finally come to the bosonic and fermionic zero modes associated with the above

heterotic fivebranes. Since the core of the fivebrane is essentially a four-dimensional Yang-

Mills instanton dressed up with axion and dilaton fields, the zero modes that we are going

to count are actually those of the instanton. For example, the bosonic (fermionic) zero

modes arising from translation (supertranslation) invariance are the same in both the gauge

and the gravitational sectors, therefore they need only be counted once. Hence counting

the zero modes associated with the instanton is sufficient. There are four translational

zero modes (the location of the instanton center) and one dilatational zero mode (the

instanton size). Global SU(2) rotations of the instanton add three more zero modes. In

addition there are 112 zero modes associated with the minimal embedding of SU(2) in E8

or SO(32). These are actually related to the generators of the coset E8/E7 × SU(2) or

SO(32)/SO(28)× SO(4) which do not leave the SU(2) subgroup invariant. So we have a

total of 120 bosonic zero modes. The fermionic zero modes can be determined from the

Atiyah-Singer index theorem

n− − n+ =
1

8π2

∫
TrF 2, (5.27)

which from (5.10) and k = 1 gives 60 anti-chiral fermionic zero modes. Since each Weyl

spinor in Euclidean four-dimensional space gives 4 off-shell or 2 on-shell degrees of freedom,

60 fermionic zero modes give 240 off-shell or 120 on-shell degrees of freedom. The dynamics

of these zero modes can also be described by 60 six-dimensional sympletic Majorana-Weyl

spinors transforming covariantly under SO(1, 5). This can be achieved through the (super)

collective coordinate expansion discussed in some detail in [24,33]. As expected, there are

equal on-shell bosonic and fermionic degrees of freedom and the gauge-fixed theory on the

worldvolume is given by a d = 6, (2, 0) supersymmetric σ-model on a hyperkahler manifold.

This suggests that there might exist a Green-Schwarz-like formulation with worldvolume

κ-symmetry for the heterotic fivebrane. For the symmetric solution, since the scale size is

quantized in units of α′, the dilatational zero mode, and all its superpartners, are absent.
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5.4. Heterotic string solitons

In the previous section, we saw that the field theory limit of the heterotic string admits

a gauge heterotic fivebrane as a soliton. In this section, we show the converse, a result

which lends further support to the idea of string/fivebrane duality. After constructing the

solution, we examine its zero-modes and suggest that they might correspond to those of

the fundamental heterotic string written in a physical gauge.

Our first task is to construct the fivebrane analog of (5.1), i.e. to generalize (2.87) to

include the Yang-Mills fields. We claim that the result is

Ĩ10(heterotic) =
1

2κ2

∫
d10x

√
−g e2φ/3

(
R − 1

2 · 7!
K2 +

β′

24
tLMNOPQRStrFLMFNOFPQFRS

− 1

8
trFLMFNOtrR̂PQR̂RS +

1

32
trR̂LMR̂NOtrR̂PQR̂RS

+
1

8
trR̂LMR̂NOR̂PQR̂RS) + · · ·

)
,

(5.28)

where the tensor tIJKLMNPQ is given in [83] by

tIJKLMNPQ = − 1

2
(gIKgJL − gILgJK)(gMP gNQ − gMQgNP )

− 1

2
(gKMgLN − gKNgLM)(gPIgQJ − gPJgQI)

− 1

2
(gIMgJN − gINgJM)(gKP gLQ − gKQgLP )

+
1

2
(gJKgLMgPNgQI + gJMgNKgLP gQI

+ gJMgNP gKQgLI + permutations).

(5.29)

dK now obeys the Bianchi identity modified by Chern-Simons corrections

dK =
β′

24

(
trF 4 − 1

8
trF 2trR̂2 +

1

32
(trR̂2)2 +

1

8
trR̂4

)
. (5.30)

The fivebrane tension T6 is given by 1/β′ = (2π)3T6. This unconventional quartic action,

and the corresponding quartic Chern-Simons terms require some justification. This will

necessarily be indirect since, although the super fivebrane [10,9] σ-model is well-known, the

heterotic fivebrane σ-model has yet to be constructed. Even if we knew it, the quantization

of fivebranes is still in its infancy, and it is doubtful that (5.28) could yet be derived as

rigorously as (5.1). As in section 2.3, the point of view we adopt is that the fivebrane
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action is obtained by dualizing the string action. In particular, the Bianchi identity for

K follows from the field equation for H. However, this process does not respect the

loop expansion, and what is a tree-level effect in string perturbation theory maybe a one-

loop effect in fivebrane perturbation theory and vice-versa. To understand this, we recall

the relationship (2.58) between the string loop coupling constant g2, the fivebrane loop

coupling constant g6 and φ0. In string variables, each term in the string tree-level action

I10(heterotic) is proportional to e−2φ. Similarly, in fivebrane variables each term in the

fivebrane tree-level action Ĩ10(heterotic) is proportional to e2φ/3. Thus the Green-Schwarz

[14] anomaly cancellation term

B ∧
(
trF 4 − 1

8
trF 2trR̂2 +

1

32
(trR̂2)2 +

1

8
trR̂4

)
, (5.31)

which provides a correction to the H field equation, has no φ-dependence in string variables

and is therefore seen to be 1-loop in string perturbation theory. Similar remarks apply to

the quartic Yang-Mills and gravitational terms which appear in 1-loop corrections to the

effective action [84].

On the other hand, both these terms are tree-level in fivebrane perturbation theory,

because they both behave like e2φ/3 in fivebrane variables. The 1-loop Green-Schwarz

corrections to the H field equation now become the tree-level Chern-Simons corrections to

the K Bianchi identity (5.30). Similarly, the quartic terms must now be included in the

fivebrane tree-level action Ĩ10(heterotic). By the same token, the quadratic Yang-Mills term

in I10(heterotic) and the Chern-Simons term in (5.4) corresponding to (trF 2 − trR̂2) ∧ A
are 1 loop in fivebrane perturbation theory since they are independent of φ when written

in fivebrane variables. We therefore omit them from Ĩ10(heterotic). In arriving at (5.28)

and (5.30), we have also employed the equation (2.137) with n = 1, 2κ2 = (2π)5α′β′ which

relates the two fundamental tensions. To further justify (5.28) and (5.30), we note the

following. First, α′ has dimension −2 and β′ has dimension −6, so purely on dimensional

grounds, we would expect a quartic Yang-Mills action. This causes no problems with

unitarity. We emphasize that the exact string and fivebrane actions are equivalent; it is

merely the division into “classical” plus “quantum” which is different in the two cases.

Secondly, the Yang-Mills Chern-Simons corrections (5.30) can be derived directly from the

coupling of Yang-Mills fields to a fundamental fivebrane [85], and a case can be made for

the gravitational corrections as well [72,86]. Thirdly, under the two-parameter rescalings

of the background fields discussed in section 2.3, gMN → λ1/2σ3/2gMN , BMN → λ2BMN ,
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AMNOPQR → σ6AMNOPQR, e
φ → λ3σ−3eφ, the elementary fivebrane σ-model action S6

and the elementary string σ-model action S2 scale like S6 → σ6S6 and S2 → λ2S2. In

order that I10(heterotic) admits a fivebrane as a soliton [24], it must scale the same way

under the σ symmetry i.e. I10(heterotic) → σ6SI10(heterotic). This is indeed the case.

Similarly, we are encouraged in our search for a string soliton solution [30] of Ĩ10(heterotic)

by noting that it scales in the right way under the λ symmetry i.e. Ĩ10(heterotic) →
λ2Ĩ10(heterotic). Without further apology, we now quote the solution which is the analog

of the gauge fivebrane rather than the symmetric fivebrane. We therefore ignore the

gravitational Chern-Simons terms. The Yang-Mills field is given by the eight-dimensional

instanton [87,88]

Fmn = f(r)
i

2
Σmn(1 − Γ9)/2, f = 4ρ2/(r2 + ρ2)2 (5.32)

embedded in an SO(8) subgroup of SO(32) or E8, where ρ is the instanton size. The

instanton winding number is

k̃ =
1

384π4

∫

M8

trF 4. (5.33)

Curiously enough, we find k̃ = 1 in the case of SO(32) but k̃ = 0 in the case of E8 because

the group E8 has no independent fourth-order Casimir. We refer the reader to [30,89] for

further details. The supergravity fields are given by

ds2 = e4φ/3ηµνdx
µdxν + e−2φ/3δmndy

mdyn,

B01 = −e2φ
(5.34)

and

e−2φ = 1 + k2
r6 + 6r4ρ2 + 15r2ρ4 + 20ρ6

(r2 + ρ2)6
, forSO(32)

= 1 +
|n|k2

r6
, forE8

(5.35)

where for convenience we have set φ0 = 0 and where the constant k is given by k2 =

π/(3T6Ω7) as in (2.132), n is an integer and Ω7 is the volume of the unit seven-sphere. In

analogy with the comparison between the t’Hooft-Polyakov monopole and Dirac’s magnetic

monopole, the large-distance behavior of the gauge heterotic string is the same as that of

the elementary string. Therefore, we expect that the Bogomol’nyi bound is also saturated

since the mass and the charge depend only on the large distance behavior of the solution.

This is indeed the case [30]. This implies in particular that the single-instanton solution

yields a gauge heterotic string with a tension equal to that of the fundamental string. We

85



emphasize that the solitonic string solution has been established only to tree level in the

fivebrane field theory and are a priori valid only for e−2φ/3 << 1. The question of whether

it survives loop corrections remains a topic for future research.

Although we omit the string Chern-Simons terms corresponding to (trF 2 − trR̂2)

from our classical fivebrane considerations, they play an important role as the fivebrane

analogue of the Green-Schwarz anomaly cancellation terms [72,86]. In the case of strings,

the combined gravitational and Yang-Mills anomalies for N = 1 supergravity coupled

to a Yang-Mills supermultiplet (with n left-hand Majorana-Weyl spinors in the adjoint

representation) can be characterized by a certain 12-form, I12. As discussed in [14], the

anomaly can be cancelled only if I12 factorizes into an expression of the form I12 = dH∧X8

where X8 is an 8–form. The necessary and sufficient conditions are

n = dim G = 496,

T rF 6 =
1

48
TrF 4TrF 2 − 1

14, 400
(TrF 2)2.

(5.36)

There are only two solutions for G: SO(32) and E8 × E8. The anomaly is then cancelled

by the addition of a term in the action B∧X8. In the case of the fivebrane, we would

require that I12 factorizes into an expression of the form I12 = X4∧dK where X4 is a

4-form. Assuming that the same I12 governs both strings and fivebranes, we discover from

[14] that the necessary and sufficient conditions for this to happen are exactly the same as

those given in (5.36). Hence we find SO(32) and E8 ×E8 once more. The anomaly is then

cancelled by the term X4∧A [15,16]. Thus I12 takes on the string/fivebrane symmetrical

form I12 = dH∧dK.

A different extended soliton string solution, the “octonionic” string, was constructed

in [68]. It differs from the gauge heterotic string discussed above by solving I10(heterotic)

rather than Ĩ10(heterotic). Once again, an eight-dimensional instanton makes its appear-

ance in the transverse space but this time it is the octonionic instanton of [90,91] which

preserves SO(7) rather than SO(8). This solution breaks 15/16 of the supersymmetries.

Because the Yang-Mills lagrangian is here quadratic rather than quartic, however, the scal-

ing arguments given above for the gauge heterotic string no longer apply. As a consequence,

the octonionic string has infinite mass per unit length.
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Another example of a string solution of I10(heterotic) and which therefore also has

infinite mass per unit length is the double-instanton string solution of [67]. The ansatz

φ = φ1 + φ2,

gmn = e2φ1δmn m,n = 2, 3, 4, 5,

gij = e2φ2δij i, j = 6, 7, 8, 9,

gµν = ηµν µ, ν = 0, 1,

Hmnp = ±2ǫmnpq∂
qφ m, n, p, q = 2, 3, 4, 5,

Hijk = ±2ǫijkl∂
kφ i, j, k, l = 6, 7, 8, 9

(5.37)

with constant chiral spinors ǫ± = ǫ2 ⊗ η4 ⊗ η′4 solves the supersymmetry equations (5.15),

(5.16) and (5.17) with zero background fermi fields provided the YM gauge field satisfies

the instanton (anti) self-duality condition

Fmn = ±1

2
ǫmn

pqFpq, m, n, p, q = 2, 3, 4, 5

Fij = ±1

2
ǫij

klFkl, i, j, k, l = 6, 7, 8, 9.

(5.38)

The chiralities of the spinors ǫ2, η4 and η′4 are correlated by

(1 ∓ γ3)ǫ2 = (1 ∓ γ5)η4 = (1 ∓ γ5)η
′
4 = 0, (5.39)

so that three-quarters of the spacetime supersymmetries are broken. An exact solution is

now obtained as follows. Embed the generalized Ω±M in an SU(2) × SU(2) subgroup of

the gauge group, and equate it to the gauge connection AM [82] for M = 2, 3, 4, 5, 6, 7, 8, 9

so that dH = 0 and the corresponding curvature R(Ω±) cancels against the Yang-Mills

field strength F in both subspaces (2345) and (6789). For e−2φ1 e2φ1 = e−2φ2 e2φ2 = 0

it follows that both F and R are (anti) self-dual in both four-dimensional subspaces. The

explicit solution for φ1 and φ2 in (5.37) is given by

e2φ1 = e2φ10

(
1 +

N∑

i=1

ρ2
i

|~x− ~ai|2

)
,

e2φ2 = e2φ20


1 +

M∑

j=1

λ2
j

|~y −~bj |2


 ,

(5.40)

where ~x and ~ai are four-vectors and ρi instanton scale sizes in the space (2345), and ~y

and ~bj are four-vectors and λj instanton scale sizes in the space (6789). Axion charge
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quantization then requires that ρ2
i = e−2φ10niα

′ and λ2
j = e−2φ20mjα

′, where ni and mj

are integers. Note that for N = 0 or M = 0 we recover the symmetric fivebrane solution

of section 5.2. It is interesting to note that both the charge Q2 = −1/2
∫

S7
∗H and the

mass per unit length M2 of the infinite string diverge. By contrast, all classes of fivebrane

solutions have finite charge and mass per unit length as a result of the preservation of

half the spacetime supersymmetries and the saturation of a Bogomol’nyi bound. The fact

that three-quarters of the spacetime supersymmetries are broken for this solution means

that the saturation of the Bogomol’nyi bound is no longer guaranteed, but it is unclear

as to whether this would necessarily imply infinite mass per unit length for the string.

The divergence of the ADM mass and the topological charge in fact follows from the 1/r2

falloff of the fields, and is an infrared phenomenon, as in the case of axion strings in four

dimensions. For this reason, the divergence of the energy density and topological charge

should not prevent the exsitence of a finite effective action describing this type of string

soliton at a scale larger than the core size [68]. It would therefore seem likely that finite

mass per unit length analogs of this solution exist, possibly in the context of fundamental

fivebrane theory. Another interesting point is that the D = 8 instanton number N8 for

this string solution is in general nonzero for gauge group E8 × E8 (N8 = NM , where N

and M are the D = 4 instanton numbers in the (2345) and (6789) spaces respectively),

since in this case (TrF2)2 is nonvanishing. This is to be contrasted with the zero D = 8

instanton number found for the gauge string soliton above.
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6. String solitons in D=4

6.1. String compactification to four dimensions

It was pointed out in [24] that after toroidal compactification to four dimensions, the

fivebrane would appear as either a 0-brane, a 1-brane or a 2-brane, depending on how it

wraps around the compactified directions [70,92,93]. Thus it ought to be possible to find

soliton solutions directly from the four-dimensional string corresponding to monopoles

(0-branes), strings (1-branes) and domain walls (2-branes). It is these four-dimensional

solitons that form the subject of this section. Such fivebrane-inspired supersymmetric

monopoles † were found in [96,97,98] while the string and domain wall solutions were

found in [99].

To find these multi-monopole, multi-string and domain wall solutions we shall follow

the procedure outlined in [96,97], where it was argued that monopoles solutions of the

heterotic string could be obtained by modifying the ’t Hooft ansatz for the Yang-Mills

instanton. We shall present them from both the D = 10 and D = 4 points of view

[99]. As with the fivebrane, there are three types of string and domain wall solutions:

neutral (i.e. zero Yang-Mills field), gauge and symmetric. In common with the symmetric

fivebrane of section 5.3, the symmetric solutions are arguably exact to all orders in α′,

as discussed in section 8. Of particular interest is the solitonic string, since its couplings

to the background fields of supergravity compared to those of the fundamental string are

such that the dilaton/axion field S is replaced by the modulus field T . It thus belongs to

an O(6, 22;Z) family of dual strings just as there is an SL(2, Z) family of fundamental

strings [100]. This accords with the suggestion of [101,102] that string/fivebrane duality

interchanges the roles of strong/weak coupling duality and target space duality, which is

the subject of section 6.6. Moreover, we shall argue that these H-monopoles play the role

of winding states for the dual string.

We consider heterotic string theory compactified on a six dimensional torus. The

simplest way to derive the low energy effective action for this theory is to start with the

† The bosonic version of the monopole solution we discuss was previously discussed in

[94,95,79].
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N = 1 supergravity theory coupled to N = 1 super Yang-Mills theory in ten dimensions,

and dimensionally reduce the theory from ten to four dimensions [103,104,105,106]. Since

at a generic point in the moduli space only the abelian gauge fields give rise to massless

fields in four dimensions, it is enough to restrict to the U(1)16 part of the ten-dimensional

gauge group. We shall follow the procedure outlined in [107] and confine ourselves to the

bosonic sector. The ten-dimensional action is given by,

I10(string) =
1

32π

∫
d10z

√
−G(10) e−Φ(10)

(
R(10) +G(10)MN∂MΦ(10)∂NΦ(10)

− 1

12
H

(10)
MNPH

(10)MNP − 1

4
F

(10)I
MN F (10)IMN

)
,

(6.1)

where G
(10)
MN , B

(10)
MN , A

(10)I
M , and Φ(10) are ten-dimensional metric, anti-symmetric tensor

field, U(1) gauge fields and the scalar dilaton field respectively (0 ≤M,N ≤ 9, 1 ≤ I ≤ 16),

and,

F
(10)I
MN = ∂MA

(10)I
N − ∂NA

(10)I
M

H
(10)
MNP = (∂MB

(10)
NP − 1

2
A

(10)I
M F

(10)I
NP ) + cyclic permutations in M , N , P .

(6.2)

We have set κ2 = 16π for later convenience.

For dimensional reduction, it is convenient to introduce the “four-dimensional fields”

Ĝmn, B̂mn, ÂI
m, Φ, A

(a)
µ , Gµν and Bµν (1 ≤ m ≤ 6, 0 ≤ µ ≤ 3, 1 ≤ a ≤ 28) through the

relations [106,108,109]

Ĝmn = G
(10)
m+3,n+3, B̂mn = B

(10)
m+3,n+3, ÂI

m = A
(10)I
m+3 ,

1

2
A(m)

µ =
1

2
ĜmnG

(10)
n+3,µ,

1

2
A(I+12)

µ = −(
1

2
A(10)I

µ − ÂI
nA

(n)
µ ),

1

2
A(m+6)

µ =
1

2
B

(10)
(m+3)µ − B̂mnA

(n)
µ +

1

2
ÂI

mA
(I+12)
µ ,

Gµν = G(10)
µν −G

(10)
(m+3)µG

(10)
(n+3)νĜ

mn,

Bµν = B(10)
µν − B̂mnA

(m)
µ A(n)

ν − 1

2
(A(m)

µ A(m+6)
ν − A(m)

ν A(m+6)
µ ),

Φ = Φ(10) − 1

2
ln det Ĝ, 1 ≤ m,n ≤ 6, 0 ≤ µ, ν ≤ 3, 1 ≤ I ≤ 16.

(6.3)

Here Ĝmn denotes the inverse of the matrix Ĝmn. We now combine the scalar fields Ĝmn,

B̂mn, and ÂI
m into an O(6, 22) matrix valued scalar field M . For this we regard Ĝmn, B̂mn
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and ÂI
m as 6 × 6, 6 × 6, and 6 × 16 matrices respectively, and Ĉmn = 1

2 Â
I
mÂ

I
n as a 6 × 6

matrix, and define M to be the 28 × 28 dimensional matrix

M =




Ĝ−1 Ĝ−1(B̂ + Ĉ) Ĝ−1Â

(−B̂ + Ĉ)Ĝ−1 (Ĝ− B̂ + Ĉ)Ĝ−1(Ĝ+ B̂ + Ĉ) (Ĝ− B̂ + Ĉ)Ĝ−1Â

ÂT Ĝ−1 ÂĜ−1(Ĝ+ B̂ + Ĉ) I16 + ÂT Ĝ−1Â


 (6.4)

satisfying

MLMT = L, MT = M, L =




0 I6 0
I6 0 0
0 0 −I16


 , (6.5)

where In denotes the n× n identity matrix.

The effective action that governs the dynamics of the massless fields in the four-

dimensional theory is obtained by substituting the expressions for the ten-dimensional

fields in terms of the four-dimensional fields in (6.1), and taking all field configurations to

be independent of the internal coordinates. The result is

I4(string) =
1

32π

∫
d4x

√
−Ge−Φ

[
RG +Gµν∂µΦ∂νΦ − 1

12
Gµµ′

Gνν′
Gρρ′

HµνρHµ′ν′ρ′

− 1

4
Gµµ′

Gνν′
F (a)

µν (LML)abF
(b)
µ′ν′ +

1

8
GµνTr(∂µML∂νML)

]
,

(6.6)

where
F (a)

µν = ∂µA
(a)
ν − ∂νA

(a)
µ ,

Hµνρ = (∂µBνρ + 2A(a)
µ LabF

(b)
νρ ) + cyclic permutations of µ, ν, ρ,

(6.7)

andRG is the scalar curvature associated with the four-dimensional metricGµν . In deriving

this result we have taken
∫
d6y = 1, where ym (1 ≤ m ≤ 6) denote the coordinates labeling

the six-dimensional torus. Here Φ is the D = 4 dilaton, RG is the scalar curvature formed

from the string metric Gµν , related to the canonical metric gµν by Gµν ≡ eΦgµν . Bµν is the

2-form which couples to the string worldsheet and Aµ
a (a = 1, ..., 28) are the abelian gauge

fields. M is a symmetric 28 × 28 dimensional matrix of scalar fields satisfying MLM = L

where L is the invariant metric on O(6, 22):

L =




0 I6 0
I6 0 0
0 0 −I16


 . (6.8)

6.2. T duality and S duality

The action is invariant under the O(6, 22) transformations M → ΩMΩT , Aµ
a →

Ωa
bAµ

b, Gµν → Gµν , Bµν → Bµν , Φ → Φ, where Ω is an O(6, 22) matrix satis-

fying ΩTLΩ = L. T -duality corresponds to the O(6, 22;Z) subgroup and is known
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to be an exact symmetry of the full string theory [110]. The equations of motion,

though not the action, are also invariant under the SL(2, R) transformations: M →
ωMωT ,Fµν

aα → ωα
βFµν

aβ , gµν → gµν , M → M where α = 1, 2 with Fµν
a1 = Fµν

a and

Fµν
a2 =

(
λ2(ML)a

bF̃µν
b + λ1Fµν

a
)
, where ω is an SL(2, R) matrix satisfying ωTLω = L

and where

M =
1

λ2

(
1 λ1

λ1 |λ|2
)
,L =

(
0 1
−1 0

)
. (6.9)

λ is given by λ = Ψ + ie−Φ ≡ λ1 + iλ2. The axion Ψ is defined through the relation
√−gHµνρ = −e2Φǫµνρσ∂σΨ. S-duality corresponds to the SL(2, Z) subgroup and there

is now a good deal of evidence [111,112,108,113,107,114,115,109,99,116] in favor of its also

being an exact symmetry of the full string theory. See also [117]. For the restricted class of

configurations obtained by setting to zero the 16 gauge fields F 13→28 originating from the

ten-dimensional gauge fields, it is possible to define a dual action [109] which has manifest

SL(2, R) symmetry. The field strengths F 1→6, whose origin resides in the D = 10 metric,

remain the same but the F 7→12, whose origin resides in the D = 10 2-form, are replaced

by their duals. The equations of motion are also invariant under O(6, 6); the action is

not except for the SL(6, R) subgroup which acts trivially. This action is precisely the one

obtained by dimensional reduction from the dual (6-form) version of D = 10 supergravity

which couples to the worldvolume of the fivebrane [17,24] and for which the axion is just

the 6-form component lying in the extra 6 dimensions.

6.3. Fivebrane compactification to four dimensions

Once again we shall follow the procedure of [107]. For metric G̃
(10)
MN , a six-form field

B̃
(10)
M1...M6

, and dilaton field Φ̃(10) , we can rewrite (2.87) as

I10(fivebrane) =
1

32π

∫
d10z

√
−G̃(10) eΦ̃

(10)/3
(
R̃(10)

− 1

2 × 7!
G̃(10)M1N1 · · · G̃(10)M7N7H̃

(10)
M1...M7

H̃
(10)
N1...N7

)
,

(6.10)

where

H̃
(10)
M1...M7

= ∂[M1
B̃

(10)
M2...M7]

. (6.11)
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We showed in section 2 that the equations of motion and the Bianchi identities derived from

this action can be shown to be identical to those derived from the action (6.1) provided

we make the identifications

Φ̃(10) = Φ(10), G̃
(10)
MN = e−Φ(10)/3G

(10)
MN ,√

−G̃(10) eΦ̃
(10)/3G̃(10)M1N1 · · · G̃(10)M7N7H̃

(10)
N1...N7

= − 1

3!
ǫM1...M10HM8M9M10

.
(6.12)

In order to carry out the dimensional reduction of this theory from ten to four dimen-

sions, it is convenient to introduce the “four-dimensional fields” λ, Cm
µ , Dm

µ , Ĝmn, Bmn
µν ,

Emnp
µνρ and gµν through the relations [101]:

Ĝmn =eΦ̃
(10)/3G̃

(10)
m+3,n+3, λ1 =

1

6!
B̃

(10)
m1+3,...m6+3ǫ

m1...m6 , λ2 =
√

det Ĝ e−Φ̃(10)

,

Cm
µ =eΦ̃

(10)/3ĜmnG̃
(10)
(n+3)µ, Dm1

µ =
1

5!
ǫm1...m6B̃

(10)
µ(m2+3)...(m6+3) − λ1Cm1

µ

Bm1m2
µν =

1

4!
ǫm1...m6B̃

(10)
µν(m3+3)...(m6+3)

− [(λ1Cm1
µ Cm2

ν +
1

2
Dm1

µ Cm2
ν − 1

2
Dm1

ν Cm2
µ ) − (m1 ↔ m2)]

Em1m2m3
µνρ =

1

3!
ǫm1...m6B̃

(10)
µνρ(m4+3)...(m6+3),

gµν =(λ2)
2/3(det Ĝ)

1
6 (G̃(10)

µν − G̃
(10)
(m+3)(n+3)C

m
µ Cn

ν ),

(6.13)

and the corresponding field strengths,

F (C)m
µν =∂µCm

ν − ∂νCm
µ , F (D)m

µν = ∂µDm
ν − ∂νDm

µ

Kmn
µνρ =

([
∂µBmn

νρ − 1

2

{
(Cn

ρ F
(D)m
µν + Dn

ρF
(C)m
µν ) − (m↔ n)

}]

+ cyclic permutations of µ, ν, ρ
)

Kmnp
µνρσ =

[
∂µEmnp

νρσ + (−1)P · cyclic permutations of µ, ν, ρ, σ
]

−
[
(Cp

σK
mn
µνρ + cyclic permutations of m,n, p)

+ (−1)P · cyclic permutations of µ, ν, ρ, σ
]

−
[{
Cp

σCn
ρ (F (D)m

µν + λ1F
(C)m
µν ) + (−1)P · all permutations of m,n, p

}

+ (−1)P · inequivalent permutations of µ, ν, ρ, σ
]

−
[
(Cp

σCn
ρ Cm

ν ∂µλ1 + (−1)P · all permutations of m,n, p)

+ (−1)P · cyclic permutations of µ, ν, ρ, σ
]
.

(6.14)

93



Using the relationship between the fields in the two formulations of the ten-dimensional

N = 1 supergravity theory given in (6.12), and the definition of the fields λ1, λ2, Ĝmn and

gµν in the two formulations, one can easily verify that the two sets of definitions lead to

identical λ, Ĝmn and gµν .

The action (6.10), expressed in terms of these “four-dimensional fields”, is given by,

S =
1

32π

∫
d4x

√−g
[
R − 1

2(λ2)2
gµν∂µλ̄∂νλ+

1

4
gµνTr(∂µĜ∂νĜ

−1)

− 1

4
Ĝmng

µρgνσ
(
F

(C)m
µν −F (D)m

µν

)
LTML

(
F

(C)n
ρσ

−F (D)n
ρσ

)

− 1

2 × 2! × 3!
Ĝm1n1

Ĝm2n2
gµ1ν1 · · · gµ3ν3Km1m2

µ1µ2µ3
Kn1n2

ν1ν2ν3

− λ2

2 × 3! × 4!
Ĝm1n1

· · · Ĝm3n3
gµ1ν1 · · · gµ4ν4Km1...m3

µ1...µ4
Kn1...n3

ν1...ν4

]
,

(6.15)

where M has been defined in (6.9), and Tr denotes trace over the indices m,n (1 ≤ m,n ≤
6). The equation of motion for Em1m2m3

µ1µ2µ3
gives

∂ν1

[
λ2

√
−g Ĝm1n1

. . . Ĝm3n3
gµ1ν1 . . . gµ4ν4Kn1...n3

ν1...ν4

]
= 0. (6.16)

Since Kn1...n3
ν1...ν4

is antisymmetric in ν1, . . . ν4, we may write

λ2

√
−g Ĝm1n1

. . . Ĝm3n3
gµ1ν1 . . . gµ4ν4Kn1...n3

ν1...ν4
= ǫµ1...µ4Hm1m2m3

(6.17)

for some Hmnp. The equation (6.16) then takes the form:

∂νHm1m2m3
= 0, (6.18)

showing that Hmnp is a constant. Comparison with the original formulation of the theory

shows that the Hmnp are proportional to the internal components of the three form field

strength H
(10)
MNP . During the dimensional reduction of the original ten-dimensional N = 1

supergravity theory, we had set these constants to zero. Hence, if we want to recover the

same theory, we must set them to zero here too. This gives

Km1...m3
µ1...µ4

= 0. (6.19)

The action (6.15) now reduces to

S =
1

32π

∫
d4x

√
−g
[
R− 1

4
gµνtr(∂µML∂νML) +

1

4
gµνTr(∂µĜ∂νĜ

−1)

− 1

4
Ĝmng

µρgνσ
(
F

(C)m
µν −F (D)m

µν

)
LTML

(
F

(C)n
ρσ

−F (D)n
ρσ

)

− 1

2 × 2! × 3!
Ĝm1n1

Ĝm2n2
gµ1ν1 · · · gµ3ν3Km1m2

µ1µ2µ3
Kn1n2

ν1ν2ν3

]
,

(6.20)
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and has manifest SL(2,R) invariance

M → ωMωT ,

(
Cm

µ

−Dm
µ

)
→ ω

(
Cm

µ

−Dm
µ

)
, (6.21)

with all other fields remaining invariant under the SL(2,R) transformation.

This shows that the SL(2, R) symmetry arises naturally in the four-dimensional theory

obtained from the dimensional reduction of the dual formulation of the N = 1 supergrav-

ity theory in ten dimensions, just as the O(6, 6) or O(6, 22) symmetry arises naturally

in the dimensional reduction of the usual N = 1 supergravity theory from ten to four

dimensions. This result provides another reason for believing that the roles of S and T

duality are interchanged in going from string to fivebrane, and is entirely consistent with

an earlier observation that the dual theory interchanges the worldsheet and spacetime loop

expansions [31]. In this light, the need to treat the above 16 gauge fields on a different

footing is only to be expected since in the dual formulation their kinetic terms are 1-loop

effects.

6.4. Montonen-Olive revisited

Following [111,112] (see also [117]), and generalizing an earlier idea of Monto-

nen and Olive [42,37,43], Schwarz and Sen have conjectured [115,107] on the basis of

string/fivebrane duality that, when the solitonic excitations are included, the full string

spectrum is invariant not only under the target space O(6, 22;Z) (T -duality) but also un-

der the strong/weak coupling SL(2, Z) (S-duality). They have constructed a manifestly S

and T duality invariant mass spectrum. T -duality transforms electrically charged winding

states into electrically charged Kaluza-Klein states, but S-duality transforms elementary

electrically charged string states into solitonic monopole and dyon states.

We now turn to the electric and magnetic charge spectrum. Schwarz and Sen [115,107]

present anO(6, 22;Z) and SL(2, Z) invariant expression for the mass of particles saturating

the strong Bogomol’nyi bound m = |Z1| = |Z2|:

m2 =
1

16
(αa βa)M0(M0 + L)ab

(
αb

βb

)
, (6.22)

where a superscript 0 denotes the constant asymptotic values of the fields. Here αa and

βa (a = 1, ..., 28) each belong to an even self-dual Lorentzian lattice Λ with metric given
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by L and are related to the electric and magnetic charge vectors (Qa, P a) by (Qa, P a) =
(
Mab

0(αb + λ1
0βb)/λ2

0, Labβ
b
)
.

Eq. (6.22) suggests that it is natural to combine the vectors αa and βa into a single

56-dimensional vector ξ = (αa, βa) which now belongs to a 56-dimensional lattice Γ. The

new lattice Γ is self-dual not only with respect to the metric L̂ = L ⊗ L. The latter

condition says that, for any two vectors ξ = (αa, βa) and ξ′ = (α′a, β′a) belonging to the

lattice Γ

ξT L̂η′ = αaLabβ
′b − α′aLabβ

b = integer. (6.23)

This is just the Dirac-Schwinger-Zwanziger-Witten quantization condition for the magnetic

charge [63,65,64,66]. We shall return to this Sen-Schwarz spectrum in section 6.8.

6.5. Monopoles, strings and domain walls

In this section we now turn to the explicit solutions for the monopole, string and

domain wall obtained by wrapping the fivebrane around the extra dimensions. We shall

see that the neutral monopoles may be identified with the monopole states in the Sen-

Schwarz spectrum. Moreover, we shall argue that they are the winding states of the dual

string soliton regarded as a fundamental theory in its own right. From the ’t Hooft ansatz

for the Yang-Mills instanton (see section 5), depending on how many of the four coordinates

f is allowed to depend and depending on whether we compactify, we shall obtain D = 10

multi-fivebrane and D = 4 multi-monopole, multi-string and domain wall solutions. This

follows from the observation that the arguments of chapter 5 do not depend on the precise

form of f or the dilaton function [99].

We rewrite the ansatz (5.11) with the following notation

gµν = e2φδmn m,n = 1, 2, 3, 4,

gµν = ηµν µ, ν = 0, 5, 6, 7, 8, 9,

Hmnp = ±2ǫmnpk∂
kφ m, n, p, k = 1, 2, 3, 4,

(6.24)

with e−2φ e2φ = 0. Let us single out a direction in the transverse four-space (say x4) and

assume all fields are independent of this coordinate. Since all fields are already independent

of x5, x6, x7, x8, x9, we may consistently assume the x4, x5, x6, x7, x8, x9 are compactified

on a six-dimensional torus, where we shall take the x4 circle to have circumference 2πR
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and the rest to have circumference 2π
√
α′, so that (2π)6R1α

′5/2κ2
4 = κ2

10. Going back to

the ’t Hooft ansatz (5.6), the solution for f satisfying the f−1 f = 0 has the form

fM = 1 +

N∑

i=1

mi

|~x− ~ai|
, (6.25)

where mi is proportional to the charge and ~ai the location in the three-space (123) of the

ith instanton string. If we make the identification Φ ≡ A4 then the lagrangian density

may be rewritten as

F a
µνF

a
µν = F a

jkF
a
jk + 2F a

k4F
a
k4 = F a

jkF
a
jk + 2DkΦaDkΦa, (6.26)

where j, k = 1, 2, 3. We now go to 3 + 1 space (0123) with the Lagrangian density

L = −1

4
Ga

αβG
αβa − 1

2
DαΦaDαΦa, (6.27)

where α, β = 0, 1, 2, 3. It follows that the above ansatz is a static solution with Aa
0 = 0

and all time derivatives vanish. The solution in 3 + 1 dimensions has the form

Φa = ∓1

g
δaj∂j ln fM ,

Aa
k =

1

g
ǫakj∂j ln fM ,

(6.28)

where j, k = 1, 2, 3 and g is the YM coupling constant. This solution represents a multi-

instanton string configuration with sources at ~ai, i = 1, 2...N [96,97]. ∗ For e2φ = e2φ0fM ,

we obtain a neutral solution and a symmetric solution [96,97] respectively depending on

whether we set the gauge field equal to zero or to the generalized connection. In both

cases, the magnetic charge is given by g̃1 =
√

2κ4T̃1, where T̃1 = T̃6(2π
√
α′)5 obeys, from

(2.137), the quantization condition

2πR1κ
2
4T2T̃1 = nπ. (6.29)

This implies mi = niα
′/2R1. Similarly the “electric” charge of the fundamental string is

e1 =
√

2κ4T1, where T1 = T22πR1, and hence

e1g̃1 = 2πn (6.30)

∗ This modified ’t Hooft ansatz does not represent a true multi-monopole solution of

the pure Yang-Mills field theory but nevertheless possesses some properties analogous to

those of a multi-monopole solution [118,96,97,98].
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as expected. A noteworthy feature of this solution is that the divergences from both gauge

and gravitational sectors cancel in the classical action.

It is straightforward to reduce the above solution to an explicit solution in the four-

dimensional space (0123). The gauge field reduction is exactly as above, i.e. we replace

A4 with the scalar field Φ. In the gravitational sector, the reduction from ten to five

dimensions is trivial, as the metric is flat in the subspace (56789). In going from five

to four dimensions, one follows the usual Kaluza-Klein procedure of replacing g44 with a

scalar field e−2σ1 . The tree-level effective action reduces in four dimensions to

I4 =
1

2κ2
4

∫
d4x

√
−ge−2φ−σ1

(
R + 4(∂φ)2 + 4∂σ · ∂φ− e2σ1

MαβM
αβ

4

)
, (6.31)

where α, β = 0, 1, 2, 3 and where Mαβ = Hαβ4 = ∂αBβ4 − ∂βBα4. The four-dimensional

monopole solution for this reduced action is then given by

e2φ = e−2σ1 = e2φ0

(
1 +

N∑

i=1

mi

|~x− ~ai|

)
,

ds2 = −dt2 + e2φ
(
dx2

1 + dx2
2 + dx2

3

)
,

Mij = ±ǫijk∂ke
2φ, i, j, k = 1, 2, 3.

(6.32)

For a single monopole, in particular, we have

Mθφ = ±m sin θ, (6.33)

which is the magnetic field strength of a Dirac monopole. Note, however, that this

monopole did not arise from the Yang-Mills field strength FMN but from the compactified

three-form H, and arises in all versions of this solution. In particular, one may obtain a

multi-magnetic monopole solution of purely bosonic string theory [79].

We now modify the solution of the ’t Hooft ansatz even further and choose two di-

rections in the four-space (1234) (say x3 and x4) and assume all fields are independent

of both of these coordinates. We may now consistently assume that x3, x4, x6, x7, x8, x9

are compactified on a six-dimensional torus, where we shall take the x3 and x4 circles

to have circumference 2πR2 and the remainder to have circumference 2π
√
α′, so that

(2π)6R2
2α

′2κ2
4 = κ2

10. Then the solution for f satisfying f−1 f = 0 has multi-string

structure

fS = 1 −
N∑

i=1

λi ln |~x− ~ai|, (6.34)
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where λi is the charge per unit length and ~ai the location in the two-space (12) of the ith

string. If we make the identification Φ ≡ A4 and Ψ ≡ A3 then the lagrangian density for

the above ansatz can be rewritten as

F a
µνF

a
µν = F a

jkF
a
jk + 2DkΦaDkΦa + 2DkΨaDkΨa, (6.35)

where j, k = 1, 2. We now go to the 3 + 1 space (0125) with the lagrangian density

L = −1

4
Ga

ρσG
ρσa − 1

2
DρΦ

aDρΦa − 1

2
DρΨ

aDρΨa, (6.36)

where ρ, σ = 0, 1, 2, 5. It follows that the multi-string ansatz is a static solution with

Aa
0 = 0 and all time derivatives vanish. The solution in 3 + 1 dimensions has the form

Φa = ∓1

g
δaj∂j ln fS ,

Ψk =
1

g
ǫkj∂j ln fS ,

Aa
k = −δa3 1

g
ǫkj∂j ln fS,

(6.37)

where j, k = 1, 2. This solution represents a multi-string configuration with sources at

~ai, i = 1, 2...N . By setting e2φ = e2φ0fS, we obtain from the fivebrane ansatz a neutral

multi-string solution and an exact heterotic multi-string solution. The neutral single-string

solution coincides with that of [119] in the far-field limit. The solitonic string tension T̃2

is given by T̃6(2π)4α′2 and from (2.137) is related to the fundamental string tension T2 by

(2πR2)
2κ2

4T2T̃2 = nπ. (6.38)

This implies λi = niα
′/2πR2

2. Like the monopole, the lagrangian per unit length for the

string solution is finite as a result of the cancellation of divergences between the gauge and

gravitational sectors.

As in the multi-monopole case, it is straightforward to reduce the multi-string solution

to a solution in the four-dimensional space (0125). The gauge field reduction is done in

(6.37). In the gravitational sector, the reduction from ten to six dimensions is trivial, as the

metric is flat in the subspace (6789). In going from six to four dimensions, we compactify

the x3 and x4 directions and again follow the Kaluza-Klein procedure by replacing g33 and

g44 with a scalar field e−2σ2 . The tree-level effective action reduces in four dimensions to

S4 =
1

2κ2
4

∫
d4x

√−ge−2φ−2σ2

(
R + 4(∂φ)2 + 8∂σ2 · ∂φ+ 2(∂σ2)

2 − e4σ2
NρN

ρ

2

)
,

(6.39)
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where ρ = 0, 1, 2, 5, where Nρ = Hρ34 = ∂ρB, and where B = B34. The four-dimensional

string soliton solution for this reduced action is then given by

e2φ = e−2σ2 = e2φ0

(
1 −

N∑

i=1

λi ln |~x− ~ai|
)
,

ds2 = −dt2 + dx2
5 + e2φ

(
dx2

1 + dx2
2

)
,

Ni = ±ǫij∂je
2φ.

(6.40)

We complete the family of solitons that can be obtained from the solutions of the

’t Hooft ansatz by demanding that f depend on only one coordinate, say x1. We may

now consistently assume that x2, x3, x4, x7, x8, x9 are compactified on a six-dimensional

torus, where we shall take the x2, x3 and x4 circles to have circumference 2πR3 and the

rest to have circumference 2π
√
α′, so that (2π)6R3

3α
′3/2κ2

4 = κ2
10. Then the solution of

f−1 f = 0 has domain wall structure with the “confining potential”

fD = 1 + Λx1, (6.41)

where Λ is a constant. By setting e2φ = e2φ0fD, we obtain from the fivebrane ansatz

a neutral domain wall solution and an exact heterotic domain wall solution. The soli-

tonic domain wall tension T̃3 is given by T̃6(2π
√
α′3 and from (2.137) is related to the

fundamental string tension T2 by

(2πR3)
3κ2

4T2T̃3 = nπ. (6.42)

This implies Λ = nα′/2πR3
3. Like the monopole and string we cannot identify an explicit

coset conformal field theory near each source. Again the reduction to D = 4 is straight-

forward. In the gauge sector, the action reduces to YM + three scalar fields Φ, Ψ and Π.

For the spacetime (0156) the solution for the fields is given by

Φ1 = ∓1

g
∂1 ln fD,

Ψ3 =
1

g
∂1 ln fD,

Π2 = −1

g
∂1 ln fD,

Aµ = 0,

(6.43)
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where µ = 0, 1, 5, 6. In the gravitational sector the tree-level effective action in D = 4 has

the form

S4 =
1

2κ2

∫
d4x

√
−ge−2φ−3σ3

(
R+ 4(∂φ)2 + 12∂σ3 · ∂φ+ 6(∂σ3)

2 − e6σ3
P 2

2

)
, (6.44)

where P is a cosmological constant. Note that (6.44) is not obtained by a simple reduction

of the ten-dimensional action owing to the nonvanishing of H234. The four-dimensional

domain wall solution for this reduced action is then given by

e2φ = e−2σ3 = e2φ0 (1 + Λx1) ,

ds2 = −dt2 + dx2
5 + dx2

6 + e2φdx2
1,

P = Λ.

(6.45)

A trivial change of coordinates reveals that the spacetime is, in fact, flat. Dilatonic do-

main walls with a flat spacetime have been discussed in a somewhat different context in

[120,121,122].

As for the fivebrane in D = 10, the mass of the monopole, the mass per unit length

of the string and the mass per unit area of the domain wall saturate a Bogomol’nyi bound

with the topological charge. (In the case of the string and domain, wall, however, we

must follow [19] and extrapolate the meaning of the ADM mass to non-asymptotically flat

spacetimes.)

6.6. String/string duality and S ↔ T

Let us focus on the solitonic string configuration (6.40) in the case of a single source.

In terms of the complex field

T = T1 + iT2

= B34 + ie−2σ

= B34 + i
√

detgS
mn m,n = 3, 4,

(6.46)

where gS
MN is the string σ-model metric, the solution for n = 1 and R2 =

√
α′ takes the

form (with z = x1 + x2)

T =
1

2πi
ln

z

r0
,

ds2 = −dt2 + dx2
5 −

1

2π
ln

r

r0
dzdz,

(6.47)
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whereas both the four-dimensional (shifted) dilaton η = φ + σ and the four-dimensional

two-form Bµν are zero. In terms of the canonical metric gµν , T1 and T2, the relevant part

of the action takes the form

S4 =
1

2κ2
4

∫
d4x

√
−g
(
R − 1

2T 2
2

gµν∂µT∂νT

)
(6.48)

and is invariant under the SL(2, R) transformation

T → aT + b

cT + d
, ad− bc = 1. (6.49)

The discrete subgroup SL(2, Z), for which a, b, c and d are integers, is just a subgroup of

the O(6, 22;Z) target space duality, which can be shown to be an exact symmetry of the

compactified string theory at each order of the string loop perturbation expansion.

This SL(2, Z) is to be contrasted with the SL(2, Z) symmetry of the elementary four-

dimensional solution of [19] and of section 3.3. In the latter solution T1 and T2 are zero,

but η and Bµν are non-zero. The relevant part of the action is

S4 =
1

2κ2
4

∫
d4x

√
−g
(
R − 2gµν∂µη∂νη −

1

12
e−4ηHµνρH

µνρ

)
. (6.50)

The equations of motion of this theory also display an SL(2, R) symmetry, but this becomes

manifest only after dualizing and introducing the axion field a via

√−ggµν∂νa =
1

3!
ǫµνρσHνρσe

−4η. (6.51)

Then in terms of the complex field

S = S1 + iS2

= a+ ie−2η
(6.52)

the Dabholkar et al. fundamental string solution may be written

S =
1

2πi
ln

z

r0
,

ds2 = −dt2 + dx2
5 −

1

2π
ln

r

r0
dzdz.

(6.53)

Thus (6.47) and (6.53) are the same with the replacement T ↔ S. It has been conjectured

that this second SL(2, Z) symmetry may also be a symmetry of string theory [111,108,109],

but this is far from obvious order by order in the string loop expansion since it involves
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a strong/weak coupling duality η → −η. What interpretation are we to give to these two

SL(2, Z) symmetries: one an obvious symmetry of the fundamental string and the other

an obscure symmetry of the fundamental string?

Related issues are brought up in the recent interesting papers by Sen [100], Schwarz

and Sen [101] and Binétruy [102]. In particular, Sen draws attention to the Dabholkar et

al. string solution (6.53) and its associated SL(2, Z) symmetry as supporting evidence in

favor of the conjecture that SL(2, Z) invariance may indeed be an exact symmetry of string

theory. He also notes that the spectrum of electric and magnetic charges is consistent with

the proposed SL(2, Z) symmetry [100].†

All of these observations fall into place if one accepts the proposal of Schwarz and

Sen [101]: under string/fivebrane duality the roles of the target-space duality and the

strong/weak coupling duality are interchanged ! This proposal is entirely consistent with

an earlier one that under string/fivebrane duality the roles of the σ-model loop expan-

sion and the string loop expansion are interchanged [31]. In this light, the two SL(2, Z)

symmetries discussed above are just what one expects. From the string point of view, the

T -field SL(2, Z) is an obvious target space symmetry, manifest order by order in string

loops whereas the S-field SL(2, Z) is an obscure strong/weak coupling symmetry. From

the fivebrane point of view, it is the T -field SL(2, Z) which is obscure while the S-field

SL(2, Z) is an “obvious” target space symmetry. (This has not yet been proved except at

the level of the low-energy field theory, however. It would be interesting to have a proof

starting from the worldvolume of the fivebrane.) This duality of dualities is illustrated in

Table 4.

† Sen also discusses the concept of a “dual string”, but for him this is obtained from

the fundamental string by an SL(2, Z) transform. For us, a dual string is obtained by the

replacement S ↔ T .
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Fundamental string Dual string

Moduli T = b+ ie−σ S = a+ ie−η

Worldsheet coupling < eσ >= α′/R2 < eη >= g2

Large/small radius R→ α′/R g → 1/g

T-duality O(6, 22;Z) SL(2, Z)

Axion/dilaton S = a+ ie−η T = b+ ie−σ

Spacetime coupling < eη >= g2 < eσ >= α′/R2

Strong/weak coupling g → 1/g R→ α′/R

S-duality SL(2, Z) O(6, 22;Z)

Table 4: Duality of dualities.

String theory requires two kinds of loop expansion: classical (α′) worldsheet loops

with expansion parameter < eσ > where σ is a modulus field, and quantum (h̄) spacetime

loops with expansion parameter < eη > where η is the dilaton field. Introducing the

axion field a and another pseudoscalar modulus field b, four-dimensional string/string

duality interchanges the roles of S = a + ie−η and T = b + ie−σ, and hence interchanges

classical and quantum. Thus this duality of dualities exhibited by four-dimensional strings

is entirely consistent with the earlier result that ten-dimensional string/fivebrane duality

interchanges the spacetime and worldsheet loop expansions [31], and is entirely consistent

with the Dirac quantization rule (6.38) that follows from the string/fivebrane rule (1.2):

8GR2 = nα′α̃′ n = integer, (6.54)

where 2πα̃′ is the inverse tension of the dual string. Thus, for n = 1, we have

< eη > = g2 = 8G/α′ = α̃′/R2

< eσ > = g̃2 = 8G/α̃′ = α′/R2
(6.55)

where g̃ is the dual string spacetime loop expansion parameter. Invariance of the Dirac

quantization rule requires that an S (T ) transformation of the fundamental string be

accompanied by a T (S) transformation of the dual string.

Group theoretically, these dualities are given by O(6, 22;Z) in the case of T -duality

and SL(2, Z) in the case of S-duality. It has been suggested [117,116,123,124] that these

two kinds of duality should be united into a bigger group O(8, 24;Z) which contains both as
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subgroups (see section 6.8). This would have the bizarre effect of eliminating the distinction

between classical and quantum.

This interchange in the roles of the S and T field in going from the string to the

fivebrane has also been noted by Binétruy [102]. It is made more explicit when S is

expressed in terms of the variables appearing naturally in the fivebrane version

S = S1 + iS2

= A034789 + ie−2η ,

= A034789 + i
√

detgF
mn, m, n = 3, 4, 6, 7, 8, 9,

(6.56)

where gF
MN = e−φ/3gS

MN is the fivebrane σ-model metric [26] and AMNPQRS is the 6-form

which couples to the 6-dimensional worldvolume of the fivebrane, in complete analogy with

(6.46).

Note, however, that unlike the Dabholkar et al. solution and the Greene et al. solution,

the symmetric solution (6.37) also involves the non-abelian gauge fields Aρ,Φ,Ψ whose

interactions appear to destroy the SL(2, Z). This remains a puzzle. (A generalization

of the D = 4 Dabholkar et al. solution involving gauge fields may also be possible by

obtaining it as a soliton of the fivebrane theory. This would involve a D = 4 analogue of

the D = 10 solution discussed in section 5.4.)

It may at first sight seem strange that a string can be dual to another string in D = 4.

After all, the usual formula relating the dimension of an extended object, d, to that of the

dual object, d̃, is d̃ = D − d− 2. So one might expect string/string duality only in D = 6

[31]. However, when we compactify n dimensions and allow the dual object to wrap around

m ≤ d̃−1 of the compactified directions we find d̃effective = d̃−m = Deffective−d−2+(n−m),

where Deffective = D − n. In particular for Deffective = 4, d = 2, n = 6 and m = 4, we find

d̃effective = 2.

Thus the whole string/fivebrane duality conjecture is put in a different light when

viewed from four dimensions. After all, our understanding of the quantum theory of five-

branes inD = 10 is rather poor, whereas the quantum theory of strings inD = 4 is compar-

atively well-understood (although we still have to worry about the monopoles and domain

walls). In particular, the dual string will presumably exhibit the normal kind of mass

spectrum with linearly rising Regge trajectories, since the classical (h̄-independent) string

expression T̃6L
4× (angular momentum) has dimensions of (mass)2, whereas the analogous

classical expression for an uncompactified fivebrane is (T̃6)
1/5×(angular momentum) which
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has dimensions (mass)6/5 [17]. Indeed, together with the observation that the SL(2, Z)

strong/weak coupling duality appears only after compactifying at least 6 dimensions, it

is tempting to revive the earlier conjecture [17,93] that the internal consistency of the

fivebrane may actually require compactification.

6.7. Kaluza-Klein black holes in string theory

In this section, we extend the three solutions of section 6.5 to two-parameter solutions

of the low-energy equations of the four-dimensional heterotic string, characterized by a

mass per unit p-volume, Mp+1, and magnetic charge, gp+1, where p = 0, 1 or 2. We show

them to be special cases of the generic black p-branes discussed in section 3. The neutral

solitons discussed in section 6.5 are recovered in the extremal limit,
√

2κMp+1 = gp+1

and are non-singular in the sense that the curvature singularity disappears when expressed

in terms of the dual σ-model metric. The two-parameter solution extending the super-

symmetric monopole corresponds to a magnetically charged black hole, while the solution

extending the supersymmetric domain wall corresponds to a black membrane. By contrast,

the two-parameter string solution does not possess a finite horizon and corresponds to a

naked singularity.

All three solutions involve both the dilaton and the modulus fields, and are thus

to be contrasted with pure dilaton solutions. In particular, the effective scalar cou-

pling to the Maxwell field, e−aφFµνF
µν , gives rise to a new string black hole with

a =
√

3, in contrast to the pure dilaton solution of the heterotic string which has a = 1

[52,56,125,126,127,128,129,130,131,132]. It thus resembles the black hole previously stud-

ied in the context of Kaluza-Klein theories [53,54,55,133,134,135,52,130] which also has

a =
√

3, and which reduces to the Pollard-Gross-Perry-Sorkin [55,133,134] magnetic

monopole in the extremal limit. As we shall see, this is no coincidence, but a conse-

quence of the target space duality that interchanges winding modes and Kaluza-Klein

modes. In this connection, we recall [136], according to which a > 1 black holes behave

like elementary particles!

The fact that the heterotic string admits a =
√

3 black holes also has implications for

string/fivebrane duality [17–26]. We shall show that electric/magnetic duality in D = 4

may be seen as a consequence of string/fivebrane duality in D = 10.
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We begin with the two-parameter black hole. The solution of the action (6.31) is given

by

e−2Φ = e2σ1 =
(
1 − r−

r

)
,

ds2 = −
(
1 − r+

r

)(
1 − r−

r

)−1

dt2 +
(
1 − r+

r

)−1

dr2 + r2
(
1 − r−

r

)
dΩ2

2,

Fθϕ =
√
r+r− sin θ,

(6.57)

where here, and throughout this section, we set the dilaton vev Φ0 equal to zero. This

represents a magnetically charged black hole with event horizon at r = r+ and inner

horizon at r = r−. The magnetic charge and mass of the black hole are given by

g1 =
4π√
2κ

(r+r−)
1
2 ,

M1 =
2π

κ2
(2r+ − r−).

(6.58)

Changing coordinates via y = r − r− and taking the extremal limit r+ = r− yields:

e2Φ = e−2σ1 =

(
1 +

r−
y

)
,

ds2 = −dt2 + e2Φ
(
dy2 + y2dΩ2

2

)
,

Fθϕ = r− sin θ,

(6.59)

which is just the neutral (i.e. no Yang-Mills) version of the supersymmetric monopole

solution of section 6.5 which saturates the Bogomol’nyi bound
√

2κM1 ≥ g1.

Next we derive a two-parameter string solution which, however, does not possess a

finite event horizon and consequently cannot be interpreted as a black string. A two-

parameter family of solutions of the action (6.39) is now given by

e2Φ = e−2σ2 = (1 + k/2 − λ ln y),

ds2 = −(1 + k)dt2 + (1 + k)−1(1 + k/2 − λ ln y)dy2 + y2(1 + k/2 − λ ln y)dθ2 + dx2
3,

Fθ = λ
√

1 + k.

(6.60)

Note that for k 6= 0 this describes a string with non-zero deficit angle whereas for k = 0

we recover the supersymmetric string soliton solution of section 6.5 which, as shown in

section 6.6, is dual to the elementary string solution of Dabholkar et al. The solution

shown in (6.60) in fact represents a naked singularity, since the event horizon is pushed
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out to r+ = ∞, which agrees with the Horowitz-Strominger “no-4D-black-string” theorem

[50].

Finally, we consider the two-parameter black membrane solution. The two-parameter

black membrane solution of the action (6.44) is then

e−2Φ = e2σ3 =

(
1 − r

r−

)
,

ds2 = −
(

1 − r

r+

)(
1 − r

r−

)−1

dt2 +

(
1 − r

r+

)−1 (
1 − r

r−

)−4

dr2 + dx2
2 + dx2

3,

F = −(r+r−)−1/2.

(6.61)

This solution represents a black membrane with event horizon at r = r+ and inner horizon

at r = r−. Changing coordinates via y−1 = r−1 − r−1
− and taking the extremal limit yields

e2Φ = e−2σ3 =

(
1 +

y

r−

)
,

ds2 = −dt2 + dx2
2 + dx2

3 + e2Φdy2,

F = − 1

r−
,

(6.62)

which is just the supersymmetric domain wall solution of section 6.5.

The black hole, string and domain wall solutions of the heterotic string shown above

are nothing but the (d̃ = 1, d = 1, a =
√

3, ω = −4/3), (d̃ = 2, d = 0, a = 2, ω = −3/2)

and (d̃ = 3, d = −1, a =
√

7, ω = −10/7) special cases of the solutions of section 3.8. To

confirm this, it is sufficient to show that the three actions S1, S2 and S3 may be cast

into the form (3.3). This is achieved by transforming the metric gµν and scalars Φ and

σi, (i = 1, 2, 3), to the canonical metric gµν(can) and scalars φ and λ via the following field

redefinitions:

monopole

gµν = e
1√
3
(
√

2λ−φ)
gµν(can),

Φ =
1

2
√

3

(
λ√
2
− 2φ

)
,

σ1 =
1√
3

(
λ√
2

+ φ

)
.

(6.63)

string
gµν = eλgµν(can),

Φ =
1

2
(λ− φ),

σ2 =
1

2
φ.

(6.64)
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membrane

gµν = e
1√
7
(
√

6λ+φ)
gµν(can),

Φ =
1

2
√

7

(
3
√

3√
2
λ− 2φ

)
,

σ3 =
1√
7

(
− λ√

6
+ φ

)
.

(6.65)

Having done this, we can then set λ = 0 to obtain the desired result. Note that by

analytically continuing the general solution to the cases d = 0 and d = −1, we are extrap-

olating the meaning of the ADM mass and topological charge to non-asymptotically flat

spacetimes.

We note that the black hole solution corresponds to a Maxwell-scalar coupling

e−aφFµνF
µν with a =

√
3. This is to be contrasted with the pure dilaton black

hole solutions of the heterotic string that have attracted much attention recently

[52,56,125,126,127,128,129,130,131,132] and have a = 1 ∗. The case a =
√

3 also oc-

curs when the Maxwell field and the scalar field φ arise from a Kaluza-Klein reduction of

pure gravity from D = 5 to D = 4:

ĝMN = e
φ√
3

(
gµν + e−

√
3φAµAν e−

√
3φAµ

e−
√

3φAν e−
√

3φ

)
, (6.66)

where ĝMN (M,N = 0, 1, 2, 3, 4) and gµν (µ, ν = 0, 1, 2, 3) are the canonical metrics in 5

and 4 dimensions respectively. The resulting action is given by

S =
1

2κ2

∫
d4x

√
−g
[
R − 1

2
(∂φ)2 − 1

4
e−

√
3φFµνF

µν

]
(6.67)

and it admits as an “elementary” solution the a =
√

3 black hole metric (6.57), but with

the scalar field

e−2φ = ∆
√

3
− (6.68)

and the electric field
1√
2κ
e−

√
3φ ∗Fθϕ =

e

4π
sin θ (6.69)

∗ Contrary to some claims in the literature, the pure Reissner-Nordström black hole

with a = 0 is also a solution of the low energy heterotic string equations. This may be seen

by noting that it provides a solution to (N = 2, D = 4) supergravity which is a consistent

truncation of toroidally compactified N = 1, D = 10 supergravity [137].
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corresponding to an electric monopole with Noether charge e. This system also admits the

topological magnetic solution with

e−2φ = ∆−
√

3
− (6.70)

and the magnetic field
1√
2κ
Fθϕ =

g

4π
sin θ (6.71)

corresponding to a magnetic monopole with topological magnetic charge g obeying the

Dirac quantization rule

eg = 2πn, n = integer. (6.72)

In effect, it was for this reason that the a =
√

3 black hole was identified as a solution of

the Type II string in [49], the fields Aµ and φ being just the abelian gauge field and the

dilaton of (N = 2, D = 10) supergravity which arises from Kaluza-Klein compactification

of (N = 1, D = 11) supergravity.

Some time ago, it was pointed out in [135] that N = 8 supergravity, compactified from

D = 5 to D = 4, admits an infinite tower of elementary states and that these elementary

states fall into N = 8 supermultiplets. They also pointed out that this theory admits

an infinite tower of solitonic states which also fall into the same N = 8 supermultiplets.

The authors of [135] conjectured, á la Olive-Montonen [42], that there should exist a dual

formulation of the theory for which the roles of electric elementary states and magnetic

solitonic states are interchanged. It was argued in [49] that this electric/magnetic duality

conjecture in D = 4 could be reinterpreted as a particle/sixbrane duality conjecture in

D = 10.

To see this, consider the action dual to S, with a = −
√

3, for which the roles of

Maxwell field equations and Bianchi identities are interchanged:

S̃ =
1

2κ2

∫
d4x

√−g
[
R − 1

2
(∂φ)2 − 1

4
e
√

3φF̃µν F̃
µν

]
, (6.73)

where F̃µν = e−
√

3φ ∗Fµν . This is precisely the action obtained by double dimensional

reduction of a dual formulation of (D = 10, N = 2) supergravity in which the two-

form FMN (M,N = 0, ..., 9) is swapped for an 8-form F̃M1..M8
, where F̃µν = F̃µν456789.

This dual action also admits both electric and magnetic monopole solutions but because

the roles of field equations and Bianchi identities are interchanged, so are the roles of

electric and magnetic. Since the 1-form and 7-form potentials, which give rise to these
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2-form and 8-form field strengths, are those that couple naturally to the worldline of a

point particle or the worldvolume of a 6-brane, we see that the Gibbons-Perry (N =

8, D = 4) electric/magnetic duality conjecture may be re-expressed as a (Type II, D = 10)

particle/sixbrane duality conjecture. Indeed, the D = 10 black sixbrane of [50] is simply

obtained by adding 6 flat dimensions to the D = 4, a =
√

3 magnetic black hole.

In general, the N = 8 theory will admit black holes with mass M and magnetic charge

g saturating the Bogomol’nyi bounds

4πG(M2 + Σ2) = 4πGM2(1 + a2) = g2 (6.74)

where Σ = aM is the scalar charge.

The solutions presented in this section now allow us to discuss the a =
√

3 elec-

tric/magnetic duality from a totally different perspective from above. For concreteness,

let us focus on generic toroidal compactification of the heterotic string. Instead of N = 8

supergravity, the four-dimensional theory is now N = 4 supergravity coupled to 22 N = 4

vector multiplets. The same dual Lagrangians (6.67) and (6.73) still emerge but with com-

pletely different origins. The Maxwell field Fµν (or F̃µν) and the scalar field φ do not come

from the D = 10 2-form (or 8-form) and dilaton of the Type II particle (or sixbrane),

but rather from the D = 10 3-form (or 7-form) and dilaton plus modulus field of the

heterotic string (or heterotic fivebrane). Thus, the D = 4 electric/magnetic duality can

now be re-interpreted as a D = 10 string/fivebrane duality! (Note that in addition to the

6 Maxwell fields coming from the D = 10 3-form, there will be another 6 coming from

the D − 10 metric. Moreover, these are interchanged under an O(6, 6;Z) subgroup of the

target-space duality discussed below. A truncation of a single U(1) similar to (6.31) also

yields a
√

3; a result well-known from Kaluza-Klein theory†. That both kinds of black-hole

solutions have a =
√

3 can thus be understood as a consequence of duality.)

† Gibbons discusses both the a = 1 black hole of pure N = 4 supergravity and the

a =
√

3 Kaluza-Klein black hole in the same paper [52], as does Horowitz [130]. Moreover,

black holes in pure N = 4 supergravity are treated by Kallosh et al. [127–129]. The reader

may therefore wonder why the a =
√

3 N = 4 black hole discussed here was overlooked.

The reason is that pure N = 4 supergravity does not admit the a =
√

3 solution; it is

crucial that we include the N = 4 vector multiplets in order to introduce the modulus

fields.
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Because of the non-vanishing modulus field g44 = e−2σ, however, the D = 10 black

fivebrane solution is not obtained by adding 6 flat dimensions to the D = 4 black hole.

Rather the two are connected by wrapping the fivebrane around 5 of the 6 extra dimensions

[99].

Of course, we have established only that these two-parameter configurations are solu-

tions of the field theory limit of the heterotic string. Although the extreme one-parameter

solutions are expected to be exact to all orders in α′, the same reasoning does not carry

over to the new two-parameter solutions. It would be interesting to pursue conformal field

theory arguments (see section 8), perhaps along the lines recently suggested in [132].

It would be also interesting to see whether the generalization of the one-parameter

solutions of section 6.5 to the two-parameter solutions of this section can be carried out

when we include the Yang-Mills coupling. This would necessarily involve giving up the self-

duality condition on the Yang-Mills field strength, however, since the self-duality condition

is tied to the extreme,
√

2κMp+1 = gp+1, supersymmetric solutions.

Finally, there is the question of whether these solutions are peculiar to the toroidal

compactification or whether they survive in more realistic orbifold or Calabi-Yau models

[138]. Although the actions S1, S2 and S3 were originally derived in the context of the

torus [99], they also appear in a large class of N = 1 supergravity theories [139].

6.8. Massive string states as extreme black holes

The idea that elementary particles might behave like black holes is not a new one

[140]. Intuitively, one might expect that a pointlike object whose mass exceeds the Planck

mass, and whose Compton wavelength is therefore less than its Schwarzschild radius, would

exhibit an event horizon. In the absence of a consistent quantum theory of gravity, however,

such notions would always remain rather vague. Superstring theory, on the other hand,

not only predicts such massive states but may provide us with a consistent framework in

which to discuss them. In this section we confirm the claims of the previous section that

certain massive excitations of four-dimensional superstrings are indeed black holes. Of

course, non-extreme black holes would be unstable due to the Hawking effect. To describe

stable elementary particles, therefore, we must focus on extreme black holes whose masses

saturate a Bogomol’nyi bound ∗. We therefore remain agnostic concerning the stronger

∗ The relationship between extremal black holes and the gravitational field around some

of the elementary string states has also been discussed in [141,108].
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claims [142,143] that all black holes are single string states or, conversely, that all massive

string states are black holes.

We have just seen that this theory exhibits both electrically and magnetically charged

black hole solutions corresponding to scalar-Maxwell parameter a = 0, 1,
√

3. In other

words, by choosing appropriate combinations of dilaton and moduli fields to be the scalar

field φ and appropriate combinations of the field strengths and their duals to be the

Maxwell field F , the field equations can be consistently truncated to a form given by the

Lagrangian

L =
1

32π

√−g
[
R − 1

2
(∂φ)2 − 1

4
e−aφF 2

]
(6.75)

for these three values of a. (A consistent truncation is defined to be one for which all

solutions of the truncated theory are solutions of the original theory). In the case of zero

angular momentum, the bound between the black hole ADM mass m, and the electric

charge Q =
∫
e−aφF̃ /8π, where a tilda denotes the dual, is given by

m2 ≥ Q2/4(1 + a2), (6.76)

where, for simplicity, we have set the asymptotic value of φ to zero. The a = 0 case

yields the Reissner-Nordstrom solution which, notwithstanding contrary claims in the lit-

erature, does solve the low-energy string equations. The a = 1 case yields the dilaton black

hole [52,125,132]. The a =
√

3 case corresponds to the Kaluza-Klein black hole and the

“winding” black hole [144] which are related to each other by T -duality. The Kaluza-Klein

solution has been known for some time [52] but only recently recognized [144] as a heterotic

string solution.

Let us denote by NL and NR the number of left and right oscillators respectively.

We shall consider the Schwarz-Sen [115,107] O(6, 22;Z) invariant spectrum of elementary

electrically charged massive NR = 1/2 states of this four-dimensional heterotic string,

and show that the spin zero states correspond to extreme limits of black hole solutions

which preserve 1/2 of the spacetime supersymmetries. By supersymmetry, the black hole

interpretation then applies to all members of the N = 4 supermultiplet [145,146], which

has smax = 1. For a subset of states the low-energy string action can be truncated to

(6.75). The scalar-Maxwell parameter is given by a =
√

3 for NL = 1 and a = 1 for

NL > 1 (and vanishing left-moving internal momenta). The other states with NL > 1 are

extreme black holes too, but are not described by a single scalar truncation of the type

(6.75). The N = 4 supersymmetry algebra possesses two central charges Z1 and Z2. The
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NR = 1/2 states correspond to that subset of the full spectrum that belong to the 16

complex dimensional (smax ≥ 1) representation of the N = 4 supersymmetry algebra, are

annihilated by half of the supersymmetry generators and saturate the strong Bogomol’nyi

bound m = |Z1| = |Z2|. As discussed in [37,43,115,107], the reasons for focussing on this

N = 4 theory, aside from its simplicity, is that one expects that the allowed spectrum of

electric and magnetic charges is not renormalized by quantum corrections, and that the

allowed mass spectrum of particles saturating the Bogomol’nyi bound is not renormalized

either. As discussed in [115,107] only a subset of the conjectured spectrum corresponds

to elementary string states. First of all these states will be only electrically charged, i.e.

β = 0, but there will be restrictions on α too. Without loss of generality let us focus on

a compactification with M0 = I and λ2
0 = 1. Any other toroidal compactifications can

be brought into this form by O(6, 22) transformations and a constant shift of the dilaton.

The mass formula (6.22) now becomes

m2 =
1

16
αa(I + L)abα

b =
1

8
(αR)2 (6.77)

with αR = 1
2 (I+L)α and αL = 1

2 (I−L)α. In the string language αR(L) are the right(left)-

moving internal momenta. The mass of a generic string state in the Neveu-Schwarz sector

(which is degenerate with the Ramond sector) is given by

m2 =
1

8

{
(αR)

2
+ 2NR − 1

}
=

1

8

{
(αL)

2
+ 2NL − 2

}
. (6.78)

A comparison of (6.77) and (6.78) shows that the string states satisfying the Bogomol’nyi

bound all have NR = 1/2. One then finds

NL − 1 =
1

2

(
(αR)

2 − (αL)
2
)

=
1

2
αTLα, (6.79)

leading to αTLα ≥ −2. We shall now show that extreme black holes with a =
√

3 are

string states with αTLα null (NL = 1) and those with a = 1 are string states with αTLα

spacelike (NL > 1). We have been unable to identify solutions of the low-energy field

equations of (6.6) corresponding to states with αTLα timelike (NL < 1). †

Let us first focus on the a =
√

3 black hole. To identify it as a state in the spectrum we

have to find the corresponding charge vector α and to verify that the masses calculated by

† In the non-abelian theory Sen [107] identifies these states with the electric analogues

of BPS monopoles.
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the formulas (6.76) and (6.22) are identical. The action (6.6) can be consistently truncated

by keeping the metric gµν , just one field strength (F = F 1, say), and one scalar field φ

via the ansatz Φ = φ/
√

3 and M11 = e2φ/
√

3 = M−1
77 . All other diagonal components of

M are set equal to unity and all non-diagonal components to zero. Now (6.6) reduces

to (6.75) with a =
√

3. (This yields the electric and magnetic Kaluza-Klein (or “F”)

monopoles. This is not quite the truncation chosen in [144], where just F 7 was retained

and M11 = e−2φ/
√

3 = M−1
77 . This yields the electric and magnetic winding (or “H”)

monopoles. However, the two are related by T -duality). We shall restrict ourselves to

the purely electrically charged solution with charge Q = 1, since this one is expected

to correspond to an elementary string excitation. The charge vector α for this solution

is obviously given by αa = δa,1 with αTLα = 0. Applying (6.22) for the mass of the

state we find m2 = 1/16 = Q2/16, which coincides with (6.76) in the extreme limit.

This agreement confirms the claim that this extreme a =
√

3 black hole is a state in the

Sen-Schwarz spectrum and preserves 2 supersymmetries.

Next we turn to the a = 1 black hole. The theory is consistently truncated by keeping

the metric, F = F 1 = F 7 and setting M = I. The only non-vanishing scalar is the dilaton

Φ ≡ φ. Now (6.6) reduces to (6.75) with a = 1 but Q2 = 2. An extreme a = 1 black hole

with electric charge Q is then represented by the charge configuration αa = δa,1 + δa,7.

Applying (6.22) we find m2 = 1/4 = Q2/8 which coincides with (6.76) in the extreme

limit. Therefore the a = 1 extreme solution is also in the spectrum, and has αTLα = 2 or

NL = 2.

Although physically very different, we can see with hindsight that both the a =
√

3

and a = 1 black holes permit a uniform mathematical treatment by noting that both may

be obtained from the Schwarzschild solution by performing an [O(6, 1)×O(22, 1)]/[O(6)×
O(22) transformation [108]. The 28 parameters of this transformation correspond to the 28

U(1) charges. If γ and u correspond to the boost angle and a 22 dimensional unit vector

respectively, associated with O(22, 1)/O(22) transformations, δ and v denote the boost

angle and the 6 dimensional unit vector respectively, associated with the O(6, 1)/O(6)

transformations, and m0 is the mass of the original Schwarzschild black hole, then the

mass and charges of the new black hole solution are given by [108]:

m =
1

2
m0(1 + cosh γ cosh δ),

αL =
√

2m0 cosh δ sinh γ u,

αR =
√

2m0 cosh γ sinh δ v.

(6.80)
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(Note that the convention about R and L of [108] is opposite to the one used in this

section). Black holes with αTLα = 0 are generated by setting γ = δ, whereas black holes

with αTLα > 0 are generated by setting γ < δ. The Bogomol’nyi bound given in (6.77)

corresponds to m2 = (αR)2/8. This bound is saturated by taking the limit where the mass

m0 of the original Schwarzschild black hole approaches 0 and the parameter δ approaches

∞, keeping the product m0 sinh δ fixed. As discussed in [108], this is precisely the extremal

limit. Thus we see that extremal black holes satisfy the Bogomol’nyi relation, both for

αTLα = 0 and αTLα > 0.

From the above a =
√

3 solution we can generate the whole set of supersymmetric black

hole solutions with αTLα = 0 in the following way: first we note that we are interested in

constructing black hole solutions with different charges but with fixed asymptotic values

of M (which here has been set to the identity). Thus we are not allowed to make O(6, 22)

transformations that change the asymptotic value of M . This leaves us with only an

O(6) × O(22) group of transformations. The effect of these transformations acting on

the parameters given in (6.80) above is to transform the vectors u and v by O(22) and

O(6) transformations respectively without changing the parameters γ and δ. Now, the

original a =
√

3 solution corresponds to a choice of parameters γ = δ, um = δm1 and

vm = δk1. It is clear that an O(6)×O(22) transformation can rotate u and v to arbitrary

22 and 6 dimensional unit vectors respectively, wothout changing γ and δ. Since this

corresponds to the most general charge vector satisfying αTLα = 0, we see that the

O(6) × O(22) transformation can indeed generate an arbitrary black hole solution with

αTLα = 0 starting from the original a =
√

3 solution. This clearly leaves the mass

invariant, but the new charge vector α′ will in general not be located on the lattice. To

find a state in the allowed charge spectrum we have to rescale α′ by a constant k so that

α′′ = kα′ is a lattice vector. Clearly the masses calculated by (6.76) and (6.22) still agree

(this is obvious by reversing the steps of rotation and rescaling), leading to the conclusion

that all states obtained in this way preserve 1/2 of the supersymmetries. Therefore all

states in the spectrum belonging to smax = 1 supermultiplets for which NR = 1/2, NL = 1

are extreme a =
√

3 black holes.

Let us now turn to the case of the a = 1 solution. In this case the original solution

corresponds to the choice of parameters γ = 0, vm = δm1. (For γ = 0, the parameter u is

irrelevant). An O(6)×O(22) transformation can rotate v to any other 6 dimensional unit

vector, but it cannot change the parameters δ and γ. As a result, the final solution will

continue to have γ = 0 and hence αL = 0. Since this does not represent the most general
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charge vector α, with αTLα > 0, we see that the most general black hole representing

states with αTLα > 0 is not obtained in this way even after rescaling. The missing states

with αL 6= 0 are constructed by choosing γ so that tanh2 γ = α2
L/α

2
R, and u, v as for the

a =
√

3 case, followed by a suitable O(6) × O(22) rotation. Clearly, those solutions are

extreme black holes too. However, for these solutions a truncation to an effective action

of the form (6.75) is not possible. The following picture arises: for a fixed value of α2
R, α2

L

can vary in the range α2
R ≥ α2

L ≥ 0. The boundary states are described by the well-known

a =
√

3 (α2
R = α2

L) and a = 1 (α2
L = 0) black holes, whereas the states in between cannot

be related to a single scalar-Maxwell parameter a. But all solutions preserve 1/2 of the

supersymmetries.

It should also be clear that the purely magnetic extreme black hole solutions [144]

obtained from the above by the replacements φ → −φ, α → β will also belong to the

Schwarz-Sen spectrum of solitonic states. Starting from either the purely electric or purely

magnetic solutions, dyonic states in the spectrum which involve non-vanishing axion field Ψ

can then be obtained by SL(2, Z) transformations. Specifically, a black hole with charge

vector (α, 0) will be mapped into ones with charges (aα, cα) with the integers a and c

relatively prime [115,107].

Not all black hole solutions of (6.6) belong to the Sen-Schwarz spectrum, however. Let

us first consider the Reissner-Nordstrom solution. Since this black hole solves the equations

ofN = 2 supergravity, whose bosonic sector is pure Einstein-Maxwell, it solves (6.6) as well.

The required consistent truncation is obtained by keeping gµν , F = F 1 = F 7 = F̃ 2 = F̃ 8

and setting Φ = 0, M = 1. Now (6.6) effectively reduces to (6.75) with a = 0 but Q2 = 4.

On the other hand, if it were in the Schwarz-Sen spectrum its charge vectors would be given

by αa = δa,1+δa,7 with αTLα = 2 and βa = δa,2+δa,8 with βTLβ = 2. Applying (6.22) for

the mass of the state we find m2 = 1/2, which disagrees with the result m2 = 1 obtained

from the extreme limit of (6.76)Ṡo the test fails and the a = 0 black hole does not belong

to the Schwarz-Sen spectrum. This was only to be expected since it breaks 3/4 of the

supersymmetries and hence saturates the weaker Bogomol’nyi bound m = |Z1|, |Z2| = 0

[127]. Such black holes belong to the 32 complex dimensional (smax = 3/2) supermultiplet.

We see no reason to exclude these states from the full string spectrum, however. Another

example of a black hole solution not in the Schwarz-Sen spectrum is the a = 1 dilaton

black hole of [125,132] where the only non-vanishing gauge field is F 13. This has mass

m2 = Q2/8 but according to (6.22) its mass would vanish. Again, this contradiction is

only to be expected since this solution breaks all the supersymmetries, in contrast with
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the F = F 1 = F 7 embedding discussed above. We do not know whether such black holes

saturating no Bogomol’nyi bound (m > |Z1|, |Z2|), which include the neutral Schwarzschild

black holes (Z1 = Z2 = 0), are also in the string spectrum. States with these quantum

numbers would belong to the 256 dimensional (smax ≥ 2) supermultiplets. According

to [145], however, black holes breaking all the supersymmetries do not themselves form

supermultiplets. This would appear to contradict the claim that all black holes are string

states.

In the supersymmetric case, all values of a lead to extreme black holes with zero

entropy but their temperature is zero, finite or infinite according as a < 1, a = 1 or

a > 1, and so in [136] the question was posed: can only a > 1 scalar black holes describe

elementary particles? We have not definitively answered this question but a tentative

response would be as follows. First we note that the masses and charge vectors are such

that the lightest a = 0 black hole may be regarded as a bound state (with zero binding

energy) of two lightest a = 1 black holes which in turn can each be regarded as bound states

(again with zero binding energy) of two lightest a =
√

3 black holes. Thus if by elementary

particle one means an object which cannot be regarded as a bound state, then indeed

extreme scalar black holes with a > 1 are the only possibilty, but if one merely means a

state in the string spectrum then a ≤ 1 extreme scalar black holes are also permitted.

We have limited ourselves to NR = 1/2 supermultiplets with smin = 0. Having

established that the s = 0 member of the multiplet is an extreme black hole, one may

then use the fermionic zero modes to perform supersymmetry transformations to generate

the whole supermultiplet of black holes [145,146] with the same mass and charges. Of

course, there are NR = 1/2 multiplets with smin > 0 coming from oscillators with higher

spin and our arguments have nothing to say about whether these are also extreme black

holes. They could be naked singularities. Indeed, although in this paper we have focussed

primarily on identifying certain massive heterotic string states with extreme black holes,

perhaps equally remarkable is that these elementary string states can be described at all by

solutions of the supergravity theory. In a field theory, as opposed to a string theory, one is

used to having as elementary massive states only the Kaluza-Klein modes with smax = 2.

However, as we have already seen, the winding states (usually thought of as intrinsically

stringy) are on the same footing as Kaluza-Klein states as far as solutions are concerned,

so perhaps the same is true for the s > 2 states.

None of the spinning NR = 1/2 states is described by extreme rotating black hole

metrics because they obey the same Bogomol’nyi bound as the smin = 0 states, whereas
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the mass formula for an extreme rotating black hole depends on the angular momentum J .

Moreover, it is the fermion fields which carry the spin in the smin = 0 supermultiplet. (For

the a = 0 black hole, they yield a gyromagnetic ratio g = 2 [146]; the a =
√

3 and a = 1

superpartner g-factors are unknown to us). It may be that there are states in the string

spectrum described by the extreme rotating black hole metrics but if so they will belong

to the NR 6= 1/2 sector∗∗. Since, whether rotating or not, the black hole solutions are

still independent of the azimuthal angle and independent of time, the supergravity theory

is effectively two-dimensional and therefore possibly integrable. This suggests that the

spectrum should be invariant under the larger duality O(8, 24;Z) [117], which combines S

and T . The corresponding Kac-Moody extension would then play the role of the spectrum

generating symmetry [150].

∗∗ The gyromagnetic and gyroelectric ratios of the states in the heterotic string spectrum

would then have to agree with those of charged rotating black hole solutions of the heterotic

string. This is indeed the case: the NL = 1 states [147] and the rotating a =
√

3 black

holes [148] both have g = 1 whereas the NL > 1 states [143] and the rotating a = 1 [131]

(and a = 0 [149]) black holes both have g = 2. In fact, it was the observation that the

Regge formula J ∼ m2 also describes the mass/angular momentum relation of an extreme

rotating black hole which first led Salam [140] to imagine that elementary particles might

behave like black holes!
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7. Dynamics of string solitons

7.1. Metric on moduli space

All the soliton solutions we have discussed so far have the property, like BPS magnetic

monopoles, that they exert zero static force on each other and can be superposed to form

multi-soliton solutions with arbitrarily variable collective coordinates. Since these static

properties are also possessed by fundamental strings winding around an infinitely large

compactified dimension, it was conjectured in [151] that the elementary string is actually

the exterior solution for an infinitely long fundamental string. In this section we show that,

in contradistinction to the BPS case, the velocity-dependent forces between these string

solitons also vanish, at least to order β2 (where β is the velocity). We also argue that this

phenomenon provides further, dynamical evidence for the identification of the elementary

string solution with the underlying fundamental string by comparing the scattering of

the elementary solutions with expectations from a Veneziano amplitude computation for

macroscopic fundamental strings [22].

As shown in (3.52), the static ansatz leads to a vanishing velocity-dependent force for

a test (d − 1)-brane propagating in the background of an elementary (d − 1)-brane. By

duality, this result also holds for test (d̃ − 1)-branes propagating in the background of a

solitonic (d̃ − 1)-brane. As this is a rather surprising result, we would like to compute

the metric on moduli space for these solitons. The geodesics of this metric represent the

motion of quasi-static solutions in the static solution manifold and in the absence of a

full time dependent solution provide a good approximation to the low-energy dynamics

of the solitons. In all cases the metric is found to be flat in agreement with the test-

soliton approximation, which again implies vanishing dynamical force in the low-velocity

limit. Here we summarize the computation for the metric on moduli space for monopoles

discussed in [152,97].

Manton’s prescription [153] for the study of soliton scattering may be summarized

as follows. We first invert the constraint equations of the system. The resultant time

dependent field configuration does not in general satisfy the full time dependent field

equations, but provides an initial data point for the fields and their time derivatives.
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Another way of saying this is that the initial motion is tangent to the set of exact static

solutions. The kinetic action obtained by replacing the solution to the constraints into

the action defines a metric on the parameter space of static solutions. This metric defines

geodesic motion on the moduli space [153].

A calculation of the metric on moduli space for the scattering of BPS monopoles and a

description of its geodesics was worked out by Atiyah and Hitchin [154]. Several interesting

properties of monopole scattering were found, such as the conversion of monopoles into

dyons and the right angle scattering of two monopoles on a direct collision course [154,155].

The configuration space is found to be a four-dimensional manifold M2 with a self-dual

Einstein metric.

Here we adapt Manton’s prescription to study the dynamics of the heterotic string

monopoles discussed in section 6.5. We follow essentially the same steps that Manton

outlined for monopole scattering, but take into account the peculiar nature of the string

effective action. Since we work in the low-velocity limit, our kinematic analysis is nonrel-

ativistic.

We first solve the constraint equations for the monopoles. These equations are simply

the (0j) components of the tree-level equations of motion

R0j −
1

4
H2

0j + 2∇0∇jφ = 0,

−1

2
∇kH

k
0j +H0j

k∂kφ = 0.

(7.1)

We wish to find an O(β) solution to the above equations which represents a quasi-static

version of the neutral multi-monopole solution (i.e. a multi-monopole solution with time

dependent ~ai). We consider the neutral case as it was argued in [156] that the the can-

cellation of gauge and gravitational corrections in the static action for the symmetric case

also manifests itself in the dynamics, at least to O(α′). Hence the scattering of symmetric

string monopoles is expected to be similar to that of neutral string monopoles. Also, we

use the solution (6.24) with e2φ = e2φ0fM , with fM given in (6.25) and compactify only the

directions x5, x6, x7, x8, x9. In other words, we do not make the replacement g44 = e−2σ to

obtain the completely compactified version (6.32), although the results in both cases are

identical, in order to more easily keep track of the terms in the former case. We give each

monopole an arbitrary transverse velocity ~βn in the (123) subspace of the four-dimensional

transverse space and see what corrections to the fields are required by the constraints. The

121



vector ~an representing the position of the nth monopole in the three-space (123) is given

by

~an(t) = ~An + ~βnt, (7.2)

where ~An is the initial position of the nth monopole. Note that at t = 0 we recover

the exact static multi-monopole solution. Our solution to the constraints will adjust our

quasi-static approximation so that the initial motion in the parameter space is tangent to

the initial exact solution at t = 0. The O(β) solution to the constraints is given by

e2φ(~x,t) = 1 +

N∑

n=1

mn

|~x− ~an(t)| ,

g00 = −1, g00 = −1, gij = e2φδij , gij = e−2φδij ,

g0i = −
N∑

n=1

mn
~βn · x̂i

|~x− ~an(t)| , g0i = e−2φg0i,

Hijk = ǫijkm∂me
2φ,

H0ij = ǫijkm∂mg0k = ǫijkm∂k

N∑

n=1

mn
~βn · x̂m

|~x− ~an(t)| ,

(7.3)

where i, j, k,m = 1, 2, 3, 4, all other metric components are flat, all other components of H

vanish, the ~an(t) are given by (7.2) and we use a flat space ǫ-tensor. Note that g00, gij and

Hijk are unaffected to order β. Also note that we can interpret the monopoles as either

strings in the space (01234) or point objects in the three-dimensional subspace (0123).

The kinetic Lagrangian is obtained by replacing the expressions for the fields in (7.3)

into the string σ-model action (3.81) for D = 5 ∗. Since (7.3) is a solution to order β, the

leading order terms in the action (after the quasi-static part) are of order β2. The O(β)

terms in the solution give O(β2) terms when replaced in the kinetic action. Collecting all

O(β2) terms in (3.81) we get the following kinetic Lagrangian density for the volume term:

Lkin = − 1

2κ2

(
4φ̇ ~M · ~∇φ− e−2φ∂iMj∂iMj − e−2φMk∂jφ (∂jMk − ∂kMj)

+ 4M2e−2φ(~∇φ)2 + 2∂2
t e

2φ − 4∂t( ~M · ~∇φ) − 4~∇ · (φ̇ ~M)

)
,

(7.4)

∗ Strictly speaking one must add to (3.81) a surface term to cancel the double derivative

terms in the action [157,158,159,160,152] however the addition of this term introduces only

flat kinetic terms and thus presents no nontrivial contribution to the metric on moduli

space.
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where ~M ≡ −
∑N

n=1
mn

~βn

|~x−~an(t)| . Henceforth let ~Xn ≡ ~x − ~an(t). The last three terms in

(7.4) are time-surface or space-surface terms which vanish when integrated. The kinetic

Lagrangian Lkin =
∫
d3xLkin for monopole scattering converges everywhere. This can be

seen simply by studying the limiting behaviour of Lkin near each monopole. For a single

monopole at r = 0 with magnetic charge m and velocity β, we collect the logarithmically

divergent pieces and find that they cancel:

mβ2

2

∫
r2drdθ sin θdφ

(
− 1

r3
+

3 cos2 θ

r3

)
= 0. (7.5)

We now specialize to the case of two identical monopoles of magnetic charge m1 =

m2 = m and velocities ~β1 and ~β2. Let the monopoles be located at ~a1 and ~a2. Our moduli

space consists of the configuration space of the relative separation vector ~a ≡ ~a2 −~a1. The

most general kinetic Lagrangian can be written as

Lkin =h(a)(~β1 · ~β1 + ~β2 · ~β2) + p(a)
(
(~β1 · â)2 + (~β2 · â)2

)

+ 2f(a)~β1 · ~β2 + 2g(a)(~β1 · â)(~β2 · â).
(7.6)

Now suppose ~β1 = ~β2 = ~β, so that (7.6) reduces to

Lkin = (2h+ 2f)β2 + (2p+ 2g)(~β · â)2. (7.7)

This configuration, however, represents the boosted solution of the two-monopole static

solution. The kinetic energy should therefore be simply

Lkin =
MT

2
β2, (7.8)

where MT = M1 + M2 = 2M is the total mass of the two-monopole solution. It then

follows that the anisotropic part of (7.7) vanishes and we have

g + p = 0,

2(h+ f) =
MT

2
.

(7.9)

It is therefore sufficient to compute h and p. This can be done by setting ~β1 = ~β and

~β2 = 0. The kinetic Lagrangian then reduces to

Lkin = h(a)β2 + p(a)(~β · â)2. (7.10)
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Suppose for simplicity also that ~a1 = 0 and ~a2 = ~a at t = 0. The Lagrangian density of

the volume term in this case is given by

Lkin =
−1

2κ2

(
3m3e−4φ

2r4
(~β · ~x)

[
~β · ~x
r3

+
~β · (~x− ~a)
|~x− ~a|3

]
− e−2φm2β2

r4

− e−4φm3β2

2r4

(
1

r
+
~x · (~x− ~a)
|~x− ~a|3

)
+
e−6φm4β2

r2

(
1

r4
+

1

|~x− ~a|4 +
2~x · (~x− ~a)
r3|~x− ~a|3

))
.

(7.11)

The integration of the kinetic Lagrangian density in (7.11) over three-space yields the

kinetic Lagrangian from which the metric on moduli space can be read off. For large a,

the nontrivial leading order behaviour of the components of the metric, and hence for the

functions h(a) and p(a), is generically of order 1/a. In fact, for Manton scattering of BPS

monopoles, the leading order scattering angle is 2/b [153], where b is the impact parameter.

Here we restrict our computation to the leading order metric in moduli space. A tedious

but straightforward collection of 1/a terms in the Lagrangian yields

−1

2κ2

1

a

∫
d3x

[
−3m4e−6φ1

r7
(~β · ~x)2 +

m3e−4φ1

r4
β2 +

m4e−6φ1

r5
β2 − 3m5e−8φ1

r6
β2

]
, (7.12)

where e2φ1 ≡ 1 + m/r. The first and third terms clearly cancel after integration over

three-space. The second and fourth terms are spherically symmetric. A simple integration

yields

∫ ∞

0

r2dr

(
e−4φ1

r4
− 3m2e−8φ1

r6

)
=

∫ ∞

0

dr

(r +m)2
− 3m2

∫ ∞

0

dr

(r +m)4
= 0. (7.13)

The 1/a terms therefore cancel, and the leading order metric on moduli space is flat. This

implies that to leading order the dynamical force is zero and the scattering is trivial, in

agreement with the test-soliton result. In other words, there is no deviation from the

initial trajectories to leading order in the impact parameter. Analogous computations for

elementary strings in D = 4 [21] and fivebranes in D = 10 [160,161] lead to the same result

of a flat metric. From S ↔ T duality (see section 6.6) it follows that the metric on moduli

space for solitonic strings in D = 4 is also flat.

7.2. Veneziano amplitude for elementary strings

We address the scattering problem in this section from the string theoretic point of

view. In particular, we calculate the string four-point amplitude for the scattering of
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macroscopic winding state strings in the infinite winding radius limit. In this scenario, we

can best approximate the soliton scattering problem considered in the previous section but

in the case of elementary strings in D = 4. We find that the Veneziano amplitude obtained

also indicates trivial scattering in the large winding radius limit, thus providing evidence

for the identification of the elementary strings with infinitely long macroscopic fundamental

strings. The fivebrane analog of this computation awaits the construction of a fundamental

fivebrane theory. However, a vertex operator representation of fivebrane solitons (and also

of string monopoles) should in principle be possible. The computation of the fivebrane

Veneziano amplitude would then represent a dynamical test for string/fivebrane duality.

The scattering problem is set up in four dimensions, as the kinematics correspond

essentially to a four dimensional scattering problem, and strings in higher dimensions

generically miss each other anyway [162]. The precise compactification scheme is irrelevant

to our purposes.

The winding state strings then reside in four spacetime dimensions (0123), with one

of the dimensions, say x3, taken to be periodic with period R, called the winding radius.

The winding number n describes the number of times the string wraps around the winding

dimension:

x3 ≡ x3 + 2πRn (7.14)

and the length of the string is given by L = nR. The integer m, called the momentum

number of the winding configuration, labels the allowed momentum eigenvalues. The

momentum in the winding direction is thus given by

p3 =
m

R
. (7.15)

The number m is restricted to be an integer so that the quantum wave function eip·x is

single valued. The total momentum of each string can be written as the sum of a right

momentum and a left momentum

pµ = pµ
R + pµ

L, (7.16)

where pµ
R,L = (E,E~v, m

2R ± nR), ~v is the transverse velocity and R is the winding radius.

The mode expansion of the general configuration X(σ, τ) in the winding direction satis-

fying the two-dimensional wave equation and the closed string boundary conditions can
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be written as the sum of right moving pieces and left moving pieces, each with the mode

expansion of an open string [83]

X(σ, τ) = XR(τ − σ) +XL(τ + σ),

XR(τ − σ) = xR + pR(τ − σ) +
i

2

∑

n=0

1

n
αne

−2in(τ−σ),

XL(τ + σ) = xL + pL(τ + σ) +
i

2

∑

n=0

1

n
α̃ne

−2in(τ+σ).

(7.17)

The right moving and left moving components are then essentially independent parts with

corresponding vertex operators, number operators and Virasoro conditions.

The winding configuration described by X(σ, τ) describes a soliton string state. It is

therefore a natural choice for us to compare the dynamics of these states with the soliton-

like solutions of the previous sections (including the elementary solutions) in order to

determine whether we can identify the elementary string solutions of the supergravity field

equations with infinitely long fundamental strings. Accordingly, we study the scattering

of the winding states in the limit of large winding radius.

Our kinematic setup is as follows. We consider the scattering of two straight macro-

scopic strings in the center-of-mass (CM) frame with winding number n and momentum

number ±m [83,162]. The incoming momenta in the CM frame are given by

pµ
1R,L = (E,E~v,

m

2R
± nR),

pµ
2R,L = (E,−E~v,− m

2R
± nR).

(7.18)

Let ±m′ be the outgoing momentum number. For the case of m = m′, the outgoing

momenta are given by

−pµ
3R,L = (E,E ~w,

m

2R
± nR),

−pµ
4R,L = (E,−E~w,− m

2R
± nR),

(7.19)

where conservation of momentum and winding number have been used and where ±~v and

±~w are the incoming and outgoing velocities of the strings in the transverse x − y plane.

The outgoing momenta winding numbers are not a priori equal to the initial winding

numbers, but must add up to 2n. Conservation of energy for sufficiently large R then

results in the above answer. This is also in keeping with the soliton scattering nature of

the problem (i.e. the solitons do not change “shape” during a collision).
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For now we have assumed no longitudinal excitation (m = m′). We will later relax

this condition to allow for such excitation, but show that our answer for the scattering is

unaffected by this possibility. It follows from this condition that v2 = w2. For simplicity we

take ~v = vx̂ and ~w = v(cos θx̂+sin θŷ), and thus reduce the problem to a two-dimensional

scattering problem.

As usual, the Virasoro conditions L0 = L̃0 = 1 must hold, where

L0 = N +
1

2
(pµ

R)2,

L̃0 = Ñ +
1

2
(pµ

L)2
(7.20)

are the Virasoro operators [83] and where N and Ñ are the number operators for the right-

and left-moving modes respectively:

N =
∑

αµ
−nαnµ,

Ñ =
∑

α̃µ
−nα̃nµ,

(7.21)

where we sum over all dimensions, including the compactified ones. It follows from the

Virasoro conditions that

Ñ −N = mn,

E2(1 − v2) = 2N − 2 + (
m

2R
+ nR)

2
.

(7.22)

In the following we set n = 1 and consider for simplicity the scattering of tachyonic

winding states. For our purposes, the nature of the string winding states considered

is irrelevant. A similar calculation for massless bosonic strings or heterotic strings, for

example, will be slightly more complicated, but will nevertheless exhibit the same essential

behaviour. For tachyonic winding states we haveN = Ñ = m = 0. Equation (7.22) reduces

to

E2(1 − v2) = R2 − 2. (7.23)

The Mandelstam variables (s, t, u) are identical for right and left movers and are given by

s = 4

[
(R2 − 2)v2

1 − v2
− 2

]
,

t = −2

[
(R2 − 2)v2

1 − v2

]
(1 + cos θ),

u = −2

[
(R2 − 2)v2

1 − v2

]
(1 − cos θ).

(7.24)
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It is easy to see that piR · pjR = piL · pjL holds for this configuration so that the tree level

4-point function reduces to the usual Veneziano amplitude for closed tachyonic strings [162]

A4 =
κ2

4
B(−1 − s/2,−1 − t/2,−1 − u/2)

= (
κ2

4
)
Γ(−1 − s/2)Γ(−1 − t/2)Γ(−1 − u/2)

Γ(2 + s/2)Γ(2 + t/2)Γ(2 + u/2)
.

(7.25)

This can be seen as follows. In the standard computation of the four point function for

closed string tachyons, we rely on the independence of the right and left moving open

strings. For the tachyonic winding state, we also separate the right and left movers with

vertex operators given by VR = eipR·xR and VL = eipL·xL respectively to arrive at the

following expression for the amplitude

A4 =
κ2

4

∫
dµ4(z)

∏

i<j

|zi − zj |piR·pjR |zi − zj |piL·pjL . (7.26)

From piR · pjR = piL · pjL, (7.26) reduces to the expression for the four-point amplitude

of a nonwinding closed tachyonic string, from which the standard Veneziano amplitude in

(7.25) results.

To compare the implications of A4 with the results of section 7.1 we take R → ∞.

It is convenient to define x ≡ (R2−2)v2

1−v2 = s/4 + 2, since the Mandelstam variables can be

expressed solely in terms of x and θ. We now have A4 = A4(x, θ), which can be explicitly

written as

A4 = (
κ2

4
)
Γ(3 − 2x)Γ(−1 + x(1 + cos θ))Γ(−1 + x(1 − cos θ))

Γ(−2 + 2x)Γ(2 − x(1 + cos θ))Γ(2 − x(1 − cos θ))
. (7.27)

The problem reduces to studying A4 in the limit x → ∞. We now use the identity

Γ(1 − a)Γ(a) sinπa = π to rewrite A4 as

A4 = (
κ2

4π
)

[
Γ(−1 + x(1 + cos θ))Γ(−1 + x(1 − cos θ))

Γ(−2 + 2x)

]2

×
(

sin(πx(1 + cos θ)) sin(πx(1 − cos θ))

sin 2πx

)
.

(7.28)

From the Stirling approximation Γ(u) ∼
√

2πuu−1/2e−u for large u, we obtain in the limit

x→ ∞

A4 ∼
[

(x(1 + cos θ))
x(1+cos θ)

(x(1 − cos θ))
x(1−cos θ)

(2x)2x

]2

×
(

sin(πx(1 + cos θ)) sin(πx(1− cos θ))

sin 2πx

)
.

(7.29)

128



Note that the exponential terms cancel automatically. From (7.29) we notice that the

powers of x in the first factor also cancel. A4 then reduces in the limit x→ ∞ to

A4 ∼
(

1 + cos θ

2

)2x(1+cos θ)(
1 − cos θ

2

)2x(1−cos θ)

×
(

sin(πx(1 + cos θ)) sin(πx(1− cos θ))

sin 2πx

)
.

(7.30)

The poles in the third factor in (7.30) are just the usual s-channel poles. It follows from

(7.30) that for θ 6= 0, π A4 → e−f(θ)x as x→ ∞, where f is some positive definite function

of θ. Hence the 4-point function vanishes exponentially with the winding radius away from

the poles.

In general, for finite R and fixed v the strings may scatter into longitudinally excited

final states, i.e. states not satisfying the above assumption that m′ = m. The 4-point

amplitude for each transition still vanishes exponentially with R. A simple counting argu-

ment shows that the total number of possible final states for a given R is bounded by a

polynomial function of R. This counting argument proceeds as follows:

Without loss of generality, we may assume that our incoming states have N = Ñ =

m = 0 with fixed R and v. We relax the assumption of no logitudinal excitation to obtain

outgoing states with nonzero m. We still consider n = 1 winding states for simplicity. Our

scattering configuration can now be described by the incoming momenta

pµ
1R,L = (E,E~v,±R),

pµ
2R,L = (E,−E~v,±R).

(7.31)

and the outgoing momenta

−pµ
3R,L = (E1, E1 ~w1,

m

2R
±R),

−pµ
4R,L = (E2,−E2 ~w2,−

m

2R
±R).

(7.32)

Note that in general E1 and E2 are not equal to E. Without loss of generality, we take m

to be positive. From conservation of momentum, however, we have

E1 +E2 = 2E,

E1 ~w1 = E2 ~w2.
(7.33)

129



It follows from the energy momentum relations for the ingoing and outgoing momenta that

E2(1 − v2) = R2 − 2,

E2
1(1 − w2

1) = 2N1 − 2 +
( m

2R
+R

)2

,

E2
2(1 − w2

2) = 2N2 − 2 +
(
− m

2R
+R

)2

,

(7.34)

where N1 and N2 are the number operators for the the right movers of the outgoing states.

Subtracting the third equation in (7.34) from the second equation and using (7.33) we

obtain the relation

N1 −N2 +m = (E1 − E2)E. (7.35)

From the first equation in (7.34) it follows that E is bounded by some multiple of R for

fixed v. It then follows from the first equation in (7.33) that both E1 and E2 are bounded

by a multiple of R. So from (7.35) we see that N1 −N2 +m is bounded by some quadratic

polynomial in R. We now add the last two equations in (7.34) to obtain

E2
1(1 − w2

1) + E2
2(1 − w2

2) = 2N1 + 2N2 + 2R2 +
m2

2R2
− 4. (7.36)

The left hand side of (7.36) is clearly bounded by a quadratic polynomial in R. It follows

that N1 +N2 is also bounded by a quadratic polynomial, and that so are N1 and N2 and

also, then, N1 − N2. From the boundedness of N1 − N2 + m it therefore follows that m

is bounded by a polynomial in R. Therefore the total number of possible distinct excited

states (numbered by m) is bounded by a polynomial in R. The above argument also goes

through for the case of a nonzero initial momentum number. For each transition, however,

one can show that the Veneziano amplitude is dominated by an exponentially vanishing

function of R, from a calculation entirely analogous to the zero-longitudinal excitation

case worked out above. Hence the total square amplitude of the scattering (obtained by

summing the square amplitudes of all possible transitions) is still dominated by a factor

which vanishes exponentially with the radius, except at the poles at θ = 0, π corresponding

to forward and backward scattering, which are physically equivalent for identical bosonic

strings. This is in agreement with the trivial scattering found in section 7.1 and provides

further evidence for the identification of the elementary string with the fundamental string.

The above argument can be repeated for any other type of string, including the het-

erotic string [25]. The kinematics differ slightly from the tachyonic case but the 4-point
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function is still dominated by an exponentially vanishing factor in the large radius limit.

Hence the scattering is trivial, again in agreement with the result found in section 7.1.

The Veneziano amplitude result in fact holds for arbitrary incoming winding states. A

considerably more tedious calculation for the general case shows that in the large winding

radius limit the outgoing strings always scatter trivially and with no change in their indi-

vidual winding numbers. In this limit, then, these states scatter as true solitons [163]. It

would be interesting to see if this result holds for the full quantum string loop expansion.
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8. Exactness of solutions

8.1. Axionic instanton: bosonic solution

A classical solution of string theory is considered “exact” if it satisfies the string

equations of motion to all orders in the classical string parameter α′ (or equivalently if

the Weyl anomaly coefficients of the σ-model vanish to all orders in α′). Alternatively, an

exact classical solution can be demonstrated by the construction of an exact σ-model for

the worldsheet of the string or by writing down the corresponding coset conformal field

theory. In this section we follow the discussion of [79] to obtain an exact extension of the

purely bosonic version of the axionic instanton solution of section 5.2 in the limit in which

this solution reduces to a linear dilaton wormhole [164,165] (see section 2.7). Exactness is

shown by combining the metric and antisymmetric tensor in a generalized curvature, which

is written covariantly in terms of the tree-level dilaton field, and rescaling the dilaton order

by order in the parameter α′. The corresponding conformal field theory is written down.

For this purpose we use the theorem of equivalence of the massless string field equa-

tions to the sigma-model Weyl invariance conditions (demonstrated to two-loop order by

Metsaev and Tseytlin [166,167]), which require the Weyl anomaly coefficients β
G

MN , β
B

MN

and β
φ

to vanish identically to the appropriate order in the parameter α′. The two-loop

solution obtained by this method suggests a representation of the sigma model as the

product of a WZW [168] model and a one-dimensional CFT (a Feigin-Fuchs Coulomb gas)

[78]. This representation allows us to obtain an exact solution.

The bosonic sigma model action can be written as [169]

I =
1

4πα′

∫
d2x

√−η
(
ηab∂aX

M∂bX
NgMN + iǫab∂aX

M∂bX
NBMN + α′R(2)φ

)
, (8.1)

where gMN is the sigma model metric, φ is the dilaton and BMN is the antisymmetric

tensor and where ηab is the worldsheet metric and R(2) the two-dimensional curvature.

The Weyl anomaly coefficients are given by [166,167]

β
G

MN = βG
MN + 2α′∇M∇Nφ+ ∇(MWN),

β
B

MN = βB
MN + α′HMN

P∂Pφ+
1

2
HMN

PWP ,

β
φ

= βΦ + α′(∂φ)2 +
1

2
WM∂Mφ,

(8.2)
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where βG
MN , βB

MN and βΦ are the RG β functions and where HMNP = ∂[MBNP ] and

WM = −(α′2/24)∇MH2.

We follow Metsaev and Tseytlin’s computation of the renormalization group beta

functions for the general sigma-model and combine dimensional regularization and the

minimal subtraction scheme with the following generalized prescription for contraction of

ǫab tensors [166]:

ǫabǫcd = f(d)
(
δacδbd − δadδbc

)
, (8.3)

where f(d) = 1 − f1ǫ + O(ǫ2) and ǫ = d − 2. We note that the precise form of the

renormalization group beta functions at two-loop order is not scheme-independent but

depends on the choice of f1. Here we set f1 = −1, for which Metsaev and Tseytlin obtain

the following two-loop expressions for the Weyl anomaly coefficients [166,167]:

β
G

MN = α′(R̂(MN) + 2∇M∇Nφ)

+
α′2

2

(
R̂ABC

(M R̂N)ABC − 1

2
R̂BCA

(M R̂N)ABC +
1

2
R̂A(MN)B(H2)AB

)
+ ∇(MWN),

β
B

MN = α′(R̂[MN ] +HMN
P ∂Pφ)

+
α′2

2

(
R̂ABC

[M R̂N ])ABC − 1

2
R̂BCA

[M R̂N ]ABC +
1

2
R̂A[MN ]B(H2)AB

)
+

1

2
HMN

PWP ,

β
φ

=
D

6
− α′

2

(
∇2φ− 2(∂φ)2 +

1

12
H2

)

+
α′2

16

(
2(H2)MN∇M∇Nφ+R2

PMNK − 11

2
RHH +

5

24
H4 +

11

8
(H2

MN )2 +
4

3
∇H · ∇H

)

+
1

2
WM∂Mφ,

(8.4)

where ∇H · ∇H ≡ ∇MHNPQ∇MHNPQ. Unless otherwise indicated, all expressions are

written to two loop order in the beta-functions, which corresponds to O(α′) in the effec-

tive action (3.81). Also, the only nontrivial coefficients occur when all indices are in the

transverse curved four space, as it is clear that the flat dimensions do not contribute, so

henceforth we restrict ourselves to this space.

It follows from section 5.2 and the abovementioned theorem of equivalence that any

dilaton function satisfying e−2φ e2φ = 0 with

gµν = e2φδmn m,n = 1, 2, 3, 4,

gµν = ηµν µ, ν = 5, ..., 26,

Hmnp = ±2ǫmnpk∂
kφ m, n, p, k = 1, 2, 3, 4

(8.5)
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is an O(α′) solution to (8.4). Note that this is essentially the fivebrane ansatz, except that

in bosonic string theory we have 22 flat directions instead of 6. Eqs. (5.13) and (5.14)

follow immediately as in the supersymmetric case of section 5.2.

We now specialize to the spherically symmetric case of e2φ = Q/r2 in (8.5) and

determine the O(α′) corrections to the massless fields in (8.5) so that the Weyl anomaly

coefficients vanish to O(α′2). For this solution we notice [79]

∇m∇nφ = 0, (8.6)

and therefore from (5.13)

R̂i
jkl = 0, (8.7)

and we have what is called a “parallelizable” space [166,167]. To maintain a parallelizable

space to O(α′) we keep gµν and Hαβγ in their lowest order form and assume that any

corrections to (8.5) appear in the dilaton:

φ = φ̄+ α′φ1 + ...

e2φ̄ =
Q

r2
,

gµν = e2φ̄δmn,

Hmnp = ±2ǫmnpk∂
kφ̄.

(8.8)

It follows from (8.8) that H2 = 24(∂φ̄)2 = 24/Q and thus Wm = 0. It follows from (8.7)

that β
G

MN and β
B

MN vanish identically to two loop order and that

β
φ

=
D

6
+α′

(
(∂φ)2 − 1

Q

)

+
α′2

16

(
R2

kmnp −
11

2
RHH +

5

24
H4 +

11

8
(H2

mn)2 +
4

3
∇H · ∇H

)
.

(8.9)

We use the relations in equation (34) in [166] for parallelizable spaces and the observation

that (H2
mn)2 = 2H4 = 192/Q2 for our solution to get the identities

R2
kmnp =

1

8
H4,

RHH =
1

2
H4,

∇H · ∇H = 0.

(8.10)
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(8.9) then simplifies further to

β
φ

=
D

6
+ α′

(
(∂φ)2 − 1

Q

)
+ 2

α′2

Q2
. (8.11)

The lowest order term in β
φ

is proportional to the central charge and the O(α′) terms

vanish identically. With the choice
−→∇φ1 = −(1/Q)

−→∇φ0, the O(α′2) terms also vanish

identically. The two-loop solution is then given by

e2φ =
Q

r2(1−
α′
Q

)
,

gµν =
Q

r2
δmn,

Hmnp = ±2ǫmnpk∂
kφ0,

(8.12)

which corresponds to a simple rescaling of the dilaton. A quick check shows that this

solution has finite action near the singularity.

We now rewrite β
φ

in (8.11) in the following suggestive form:

6β
φ

=
(
1 + 6α′(∂φ)2

)
+

(
3 − 6

α′

Q
+ 12(

α′

Q
)2
)

= 4.

(8.13)

The above splitting of the central charge c = 6β
φ

suggests the decomposition of the corre-

sponding sigma model into the product of a one-dimensional CFT (a Feigin-Fuchs Coulomb

gas) and a three-dimensional WZW model with an SU(2) group manifold [166,167]. This

can be seen as follows. Setting u = ln r, we can rewrite (8.1) for our solution [112] in the

form I = I1 + I3, where

I1 =
1

4πα′

∫
d2x

(
Q(∂u)2 + α′R(2)φ

)
(8.14)

is the action for a Feigin-Fuchs Coulomb gas, which is a one-dimensional CFT with central

charge given by c1 = 1+6α′(∂φ)2 [170]. The imaginary charge of the Feigin-Fuchs Coulomb

gas describes the dilaton background growing linearly in imaginary time and I3 is the

Wess–Zumino–Witten [168] action on an SU(2) group manifold with central charge

c3 =
3k

k + 2
≃ 3 − 6

k
+

12

k2
+ ... (8.15)
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where k = Q/α′, called the “level” of the WZW model, is an integer. This can be seen

from the quantization condition on the Wess-Zumino term [168]

IWZ =
i

4πα′

∫

∂S±
3

d2xǫab∂ax
m∂bx

nBmn

=
i

12πα′

∫

S±
3

d3xǫabc∂ax
m∂bx

n∂cx
pHmnp

= 2πi

(
Q

α′

)
.

(8.16)

Thus Q is not arbitrary, but is quantized in units of α′. This quantization condition is

equivalent to (2.53) once we set Q = k6 from (2.51).

We use this splitting to obtain exact expressions for the fields by fixing the metric

and antisymmetric tensor field in their lowest order form and rescaling the dilaton order

by order in α′. The resulting expression for the dilaton is

e2φ =
Q

r

√
4

1+ 2α′
Q

. (8.17)

8.2. Symmetric fivebrane

The symmetric fivebrane of section 5.3 was obtained by equating the curvature of

the Yang-Mills gauge field with the generalized curvature of the axionic instanton. This

solution thus represents a supersymmetric extension of the bosonic solution of section 8.1.

Unlike the bosonic solution, however, the symmetric fivebrane can be argued to be an

exact classical solution in the multi-instanton case, and not merely in the wormhole limit

[32,33]. In that particular limit, however, one can demonstrate exactness of the symmetric

fivebrane without modification to the dilaton from both the β-function and CFT points

of view. Furthermore, these exactness arguments can be supplemented by superconformal

worldsheet σ-model arguments and nonrenormalization theorems due to higher worldsheet

supersymmetry.

From the β-function (or equations of motion) point of view, one would guess that

the tree-level symmetric fivebrane solution is exact since AM = Ω±M suggests that all

the higher order corrections vanish. This can be seen by noting that the higher order

corrections to the effective action (up to at least O(α′3)) are all at least linear in the tensor

[171,172])

TABCD ≡ trR̂[ABR̂CD] − trF[ABFCD], (8.18)
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which clearly vanishes since the two curvatures are identical.

The fact that the single instanton solution in the heterotic case carries through even

to O(α′) without correction to the dilaton seems to contradict the bosonic solution in

the wormhole limit by suggesting that the expansion for the Weyl anomaly coefficient

β
φ

terminates at one loop. This seeming contradiction is resolved by noting that in the

heterotic case the gauge rotation which decouples the fermions is anomalous [36], and the

effect of this anomaly is to replace k in (8.15) by k′ = k−2 [173]. The bosonic contribution

to this part of the central charge is then given by

c3 =
3k′

k′ + 2
= 3 − 6

k
= 3 − 6α′

Q
, (8.19)

which indeed terminates at one loop order. The exactness of the splitting then requires

that c1 not get any corrections from (∂φ)2 so that c1 + c3 = 4 is exact for the tree-level

value of the dilaton [32]. In [32,36], arguments based on N = 4 worldsheet supersymmetry

were presented to support the claim of exactness of the heterotic fivebrane. We summarize

these arguments below.

To show that a solution is an exact solution in string theory one must in principle

show that the solution derives form a superconformal worldsheet sigma-model. For the

heterotic fivebrane, one can show that the corresponding σ-model possesses (4, 4) world-

sheet supersymmetry, in which case nonrenormalization theorems show that the tree-level

solution is exact.

For generic fivebrane solutions annihilated by D = 6, N = 1 spacetime supersymme-

tries, the compactification from 10 to 6 dimensions maintains N = 1 spacetime supersym-

metry. In compactification from 10 to 4 dimensions with N = 1 spacetime supersymmetry,

the compactified 6 dimensions must possess at least (2, 0) supersymmetry. Similarly, in

compactifying to D = 4, N = 2, the six-dimensional compactification sigma-model must

possess at least (4, 0) supersymmetry. Since N = 1, D = 6 spacetime supersymmetry is

equivalent to N = 2, D = 4 spacetime supersymmetry, a generic fivebrane solution must

possess at least (4, 0) spacetime supersymmetry.

In writing down a generic heterotic fivebrane sigma-model action with (1, 0) worldsheet

supersymmetry, the only worldsheet fermions that couple nontrivially are four right movers

which couple to the generalized connection Ω− and four left movers which couple to the

gauge field, which must be an instanton to satisfy the tree-level supersymmetry equations

(see section 5.3). Now if we demand that the dilaton satisfy e−2φ e2φ = 0 and consequently
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the exactness condition A = Ω+, the theory becomes left-right symmetric and thus must

possess at least (1, 1) worldsheet supersymmetry. This can also be seen by observing that

for dH = 0

R(Ω+)mnpq = R(Ω−)pqmn (8.20)

follows immediately from (5.13). The symmetric fivebrane therefore possesses (4, 4) world-

sheet supersymmetry. For the explicit construction of the (4, 4) worldsheet σ-model, we

refer the reader to [36], in which it is argued that the existence of more than one pair of

complex structures elevates the worldsheet supersymmetry to (4, 4). As a consequence of

(4, 4) supersymmetry, the theory is finite and from nonrenormalization theorems the tree-

level solution is exact. In a similar manner, it can be argued that all symmetric solutions

correspond to (4, 4) supersymmetry on the worldsheet of the fundamental string and are

thus presumably exact to all orders in α′. In particular, this includes the D = 4 monopole,

string and domain wall solutions of section 6.5.

From algebraic conformal field theory constructions, (4, 4) worldsheet supersymmetry

manifests itself in the wormhole limit in the form of two SU(2) Kac-Moody symmetries, one

from the N = 4 superalgebra and the other from the WZW wormhole throat [174,175,36].

The double-instanton string solution of section 5.4 can also be argued to be exact us-

ing similar arguments as above. Both the β-function arguments and the (4, 4) worldsheet

supersymmetry arguments above can be used in essentially the same manner to demon-

strate exactness of the string solution. The explicit construction in this case can be found

in [176].

8.3. Exact elementary string

Finally, we summarize the arguments of [177,178] regarding the exactness of the ele-

mentary string. Consider the family of backgrounds with metric and antisymmetric tensor

characterized by a single function F (x) and dilaton φ(x):

ds2 = F (x)ηµνdx
µdxν + dxidx

i , B01 =
1

2
F (x) . (8.21)

The two functions F and φ depend only on the transverse coordinates xi. The leading

order string equations of (8.1) then reduce to [179]

∂2F−1 = 2bi∂iF
−1, φ = φ0 + bix

i +
1

2
lnF (x) , (8.22)
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where bi is a constant vector. It was argued in [179,177] that these solutions should not

receive non-trivial higher order corrections, and that one can show [177] that there exists

a scheme in which all of these solutions are exact and receive no α′ corrections. Since the

equation for F−1 is linear, linear combinations of these solutions yield new exact solutions.

For bi = 0 one recovers the elementary string solution of [19]:

F−1 = 1 +
M

rD−4
, D > 4 ; F−1 = 1 −M ln r , D = 4 , r2 = xix

i , (8.23)

where D is the number of spacetime dimensions. The case D = 10 was discussed in section

2.1. The exactness arguments proceed as follows.

For a more general model with curved transverse space, defined as [177]

LF = F (x)ηµν∂x
µ∂̄xν + (Gij +Bij)(x) ∂x

i∂̄xj + α′Rφ(x), (8.24)

the all-order conformal invariance conditions are satisfied [177] provided one is given a

conformal “transverse” theory (G′, B′, φ′) and

Gij = G′
ij +

1

2
α′ ∂ilnF ∂j lnF , φ = φ′ +

1

2
lnF , Bij = B′

ij , (8.25)

with F satisfying

−ω′F−1 + ∂iφ′∂iF
−1 = −1

2
∇′2F−1 +O(α′) + ∂iφ′∂iF

−1 = 0 . (8.26)

Here ω′ is the anomalous dimension operator depending on G′ [177,178]. When (G′, B, φ′)

correspond to a known CFT this equation can be written down explicitly to all orders

in α′. Since the relation between G and G′ is local and the transverse theory is, in

general, defined modulo local coupling redefinitions, one can argue [177] that there exists

a (“leading-order”) scheme in which the exact solution is represented by the conformal

transverse theory (G,B, φ′) and F satisfying (8.26).

The simplest example of the conformal transverse model is flat space with a linear

dilaton, in which the corresponding model is represented (in the leading-order scheme) by

Gij = δij , φ = φ0 + bix
i +

1

2
ln F . (8.27)

In this scheme, the exact form of the equation for the function F is simply

−1

2
∂2F−1 + bi∂iF

−1 = 0 , (8.28)
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i.e. the model

LF = F (x)ηµν∂x
µ∂̄xν + ∂xi∂̄xi + α′R(φ0 + bix

i +
1

2
lnF ) , (8.29)

with F satisfying (8.28) is conformally invariant to all orders, i.e. gives an exact string

solution.

In this scheme the leading-order duality is exact since the leading-order dual to (8.29)

is the model

LK = ηµν∂x
µ∂̄xν + F−1(x)∂xi∂̄xi + α′R(φ0 + bix

i) , (8.30)

which represents an exact solution [177] if F solves (8.28). In particular, one concludes

that there exists a scheme in which the elementary solution (8.23) is a classical string

solution to all orders in α′.
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9. Recent developments

This report summarizes the status of string solitons up to the summer of ’94. Since

the subject is developing so rapidly it is difficult to know when to draw the line. Here we

record some of the most interesting developments:

1) Seiberg and Witten [180], and Vafa and Witten [181] have provided further evi-

dence for the S-duality of section 6.2 in global supersymmetric Yang-Mills theories. An

interesting attempt to show evidence for S-duality in string theory can be found in the

recent paper of Gauntlett and Harvey [182].

2) Frampton and Kephart [183] have suggested that the identification of Bogomol’nyi

string states with extreme black holes of section 6.8 be generalized and claim that all

massive string states are black holes. As discussed in section 6.8, we remain agnostic on

this point.

3) The entropy of a scalar/Maxwell parameter a is given by [136]

S = πr2+

(
r+ − r−
r+

) 2a2

1+a2

(9.1)

and so the claim of section 6.8 that the extreme (r+ = r−) black holes have zero entropy,

while valid for a 6= 0, is ambiguous for a = 0. This ambiguity is resolved in recent papers

by Hawking, Horowitz and Ross [184] and Gibbons and Kallosh [185].

4) Both the a =
√

3 and a = 1 supersymmetric black holes, shown to be solutions of

the heterotic string in [144,125] and discussed in sections 6.7 and 6.8 have recently been

shown to be exact to all orders in α′ by Horowitz and Tseytlin [186] (at least in the context

of the bosonic string). Further discussions of black holes, supersymmetry and duality may

be found in the papers by Cvetič and Youm [187] and by Bergshoeff, Kallosh and Ortin

[188] (for an earlier reference, see Kalara and Nanopoulos [189]).

5) The conjecture that S and T duality be united into O(8, 24;Z), as discussed in

section 6.8, has recently been taken up by Sen [190] in the context of the D = 3 heterotic

string. He shows that the fundamental string is related to the stringy cosmic string [119]

by an O(8, 24;Z) transformation. In [48], Duff, Ferrara, Khuri and Rahmfeld find an

O(8, 24;Z) transformation relating the fundamental string to the dual string [99], and
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make various connections between the T -duality group and spacetime supersymmetry. See

also the paper by Maharana [191].

6) On the issue of p-brane singularities, Gibbons, Horowitz and Townsend [192] have

considered further the higher-dimensional resolution of dilaton black hole singularities [46]

discussed in sections 3.7 and 6.8. They conclude that an a = 1/
√

3 black hole in D = 4, the

self-dual string in D = 6 [49], the self-dual threebrane in D = 10 [50,58] and the fivebrane

in D = 11 [51] are completely nonsingular.

7) Hull and Townsend [193] have generalized the arguments of Duff and Rahmfeld

[116] and of section 6.8 concerning string states as black holes to the Type II superstring,

where the four-dimensional supersymmetry is N = 8 and where the duality group E7(7)(Z)

contains O(6, 6;Z) and SL(2, Z) as subgroups [117]. This leads to a new and interesting

interplay between elementary and solitonic string states not found in the D = 4 heterotic

string. They also make the interesting observation that the flatness of the moduli space

for solitons that break half the supersymmetry is protected by supersymmetry for N = 8

supergravity but not for N = 4. Thus there is no apparent reason to expect the moduli

space metric of extreme black hole solitons of the exact heterotic string theory (to all orders

in α′ and g) to be flat. They even make the bolder suggestion that when solitons are taken

into account there is no distinction between the field theory and the string theory.

There is now a consensus that the really interesting questions of superstring theory

will never be answered within the framework of a weak coupling perturbation expansion.

It is thus refreshing to see this new burst of activity in non-perturbative string theory.
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