332 research outputs found

    Limiting Temperatures and the Equation of State of Nuclear Matter

    Get PDF
    From experimental observations of limiting temperatures in heavy ion collisions we derive Tc, the critical temperature of infinite nuclear matter. The critical temperature is 16.6 +- 0.86 MeV. Theoretical model correlations between Tc, the compressibility modulus, K the effective mass, mm^* and the saturation density, rho_s, are exploited to derive the quantity (K/m^*)**1/2*rho_s^{-1/3}$. This quantity together with calculations employing Skyrme and Gogny interactions indicates a nuclear matter incompressibility in moderately excited nuclei that is in excellent agreement with the value determined from Giant Monopole Resonance data. This technique of extraction of K may prove particularly useful in investigations of very neutron rich systems using radioactive beams.Comment: 4 pages, 5 figure

    Isocaling and the Symmetry Energy in the Multifragmentation Regime of Heavy Ion Collisions

    Get PDF
    The ratio of the symmetry energy coefficient to temperature, asym/Ta_sym/T, in Fermi energy heavy ion collisions, has been experimentally extracted as a function of the fragment atomic number using isoscaling parameters and the variance of the isotope distributions. The extracted values have been compared to the results of calculations made with an Antisymmetrized Molecular Dynamics (AMD) model employing a statistical decay code to account for deexcitation of excited primary fragments. The experimental values are in good agreement with the values calculated but are significantly different from those characterizing the yields of the primary AMD fragments.Comment: 12 pages, 6 figure

    Towards the critical behavior for the light nuclei by NIMROD detector

    Get PDF
    The critical behavior for the light nuclei with A36\sim 36 has been investigated experimentally by the NIMROD multi-detectors. The wide variety of observables indicate the critical point has been reached in the disassembly of hot nuclei at an excitation energy of 5.6±\pm0.5 MeV/u.Comment: 4 pages, 2 figures; Proceeding of 18th Nuclear Physics Division Conference of the Euro. Phys. Society (NPDC18) "Phase transitions in strongly interacting matter", Prague, 23.8.-29.8. 2004. To be published in Nuclear Physics

    Symmetry energy of dilute warm nuclear matter

    Get PDF
    The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular by the appearance of bound states. A recently developed quantum statistical (QS) approach that takes the formation of clusters into account predicts symmetry energies that are in very good agreement with the experimental data. A consistent description of the symmetry energy is given that joins the correct low-density limit with quasiparticle approaches valid near the saturation density.Comment: 4 pages, 2 figures, 1 tabl

    Primary Isotope Yields and Characteristic Properties of the Fragmenting Source in Heavy-ion Reactions near the Fermi Energies

    Get PDF
    For central collisions of 40^{40}Ca +40+ ^{40}Ca at 35 MeV/nucleon, the density and temperature of a fragmenting source have been evaluated in a self-consistent manner using the ratio of the symmetry energy coefficient relative to the temperature, asym/Ta_{sym}/T, extracted from the yields of primary isotopes produced in antisymmetrized molecular dynamics (AMD) simulations. The asym/Ta_{sym}/T values are extracted from all isotope yields using an improved method based on the Modified Fisher Model (MFM). The values of asym/Ta_{sym}/T obtained, using different interactions with different density dependencies of the symmetry energy term, are correlated with the values of the symmetry energies at the density of fragment formation. Using this correlation, the fragment formation density is found to be ρ/ρ0=0.67±0.02\rho/\rho_0 = 0.67 \pm 0.02. Using the input symmetry energy value for each interaction temperature values are extracted as a function of isotope mass AA. The extracted temperature values are compared with those evaluated from the fluctuation thermometer with a radial flow correction.Comment: 10 pages, 8 figure

    Caloric Curves and Nuclear Expansion

    Get PDF
    Nuclear caloric curves have been analyzed using an expanding Fermi gas hypothesis to extract average nuclear densities. In this approach the observed flattening of the caloric curves reflects progressively increasing expansion with increasing excitation energy. This expansion results in a corresponding decrease in the density and Fermi energy of the excited system. For nuclei of medium to heavy mass apparent densities ~ 0.4 rho_0 are reached at the higher excitation energies.Comment: 4 pages, 3 figure

    An experimental survey of the production of alpha decaying heavy elements in the reactions of 238^{238}U +232^{232}Th at 7.5-6.1 MeV/nucleon

    Full text link
    The production of alpha particle decaying heavy nuclei in reactions of 7.5-6.1 MeV/nucleon 238^{238}U +232^{232}Th has been explored using an in-beam detection array composed of YAP scintillators and gas ionization chamber-Si telescopes. Comparisons of alpha energies and half-lives for the observed products with those of the previously known isotopes and with theoretically predicted values indicate the observation of a number of previously unreported alpha emitters. Alpha particle decay energies reaching as high as 12 MeV are observed. Many of these are expected to be from decay of previously unseen relatively neutron rich products. While the contributions of isomeric states require further exploration and specific isotope identifications need to be made, the production of heavy isotopes with quite high atomic numbers is suggested by the data.Comment: 12 pages, 12 figure
    corecore