2,535 research outputs found

    Global nonlinear optimization of spacecraft protective structures design

    Get PDF
    The global optimization of protective structural designs for spacecraft subject to hypervelocity meteoroid and space debris impacts is presented. This nonlinear problem is first formulated for weight minimization of the space station core module configuration using the Nysmith impact predictor. Next, the equivalence and uniqueness of local and global optima is shown using properties of convexity. This analysis results in a new feasibility condition for this problem. The solution existence is then shown, followed by a comparison of optimization techniques. Finally, a sensitivity analysis is presented to determine the effects of variations in the systemic parameters on optimal design. The results show that global optimization of this problem is unique and may be achieved by a number of methods, provided the feasibility condition is satisfied. Furthermore, module structural design thicknesses and weight increase with increasing projectile velocity and diameter and decrease with increasing separation between bumper and wall for the Nysmith predictor

    Solving the brachistochrone and other variational problems with soap films

    Full text link
    We show a method to solve the problem of the brachistochrone as well as other variational problems with the help of the soap films that are formed between two suitable surfaces. We also show the interesting connection between some variational problems of dynamics, statics, optics, and elasticity.Comment: 16 pages, 11 figures. This article, except for a small correction, has been submitted to the American Journal of Physic

    Bath induced coherence and the secular approximation

    Get PDF
    Finding efficient descriptions of how an environment affects a collection of discrete quantum systems would lead to new insights into many areas of modern physics. Markovian, or time-local, methods work well for individual systems, but for groups a question arises: does system-bath or inter-system coupling dominate the dissipative dynamics? The answer has profound consequences for the long-time quantum correlations within the system. We consider two bosonic modes coupled to a bath. By comparing an exact solution to different Markovian master equations, we find that a smooth crossover of the equations-of-motion between dominant inter-system and system-bath coupling exists - but requires a non-secular master equation. We predict a singular behaviour of the dynamics, and show that the ultimate failure of non-secular equations of motion is essentially a failure of the Markov approximation. Our findings justify the use of time-local theories throughout the crossover between system-bath dominated and inter-system-coupling dominated dynamics.PostprintPeer reviewe

    Polarization--universal rejection filtering by ambichiral structures made of indefinite dielectric--magnetic materials

    Full text link
    An ambichiral structure comprising sheets of an anisotropic dielectric material rejects normally incident plane waves of one circular polarization (CP) state but not of the other CP state, in its fundamental Bragg regime. However, if the same structure is made of an dielectric--magnetic material with indefinite permittivity and permeability dyadics, it may function as a polarization--universal rejection filter because two of the four planewave components of the electromagnetic field phasors in each sheet are of the positive--phase--velocity type and two are of the negative--phase--velocity type.Comment: Cleaned citations in the tex

    Public opinion on energy crops in the landscape: considerations for the expansion of renewable energy from biomass

    Get PDF
    Public attitudes were assessed towards two dedicated biomass crops – Miscanthus and Short Rotation Coppice (SRC), particularly regarding their visual impacts in the landscape. Results are based on responses to photographic and computer-generated images as the crops are still relatively scarce in the landscape. A questionnaire survey indicated little public concern about potential landscape aesthetics but more concern about attendant built infrastructure. Focus group meetings and interviews indicated support for biomass end uses that bring direct benefits to local communities. Questions arise as to how well the imagery used was able to portray the true nature of these tall, dense, perennial plants but based on the responses obtained and given the caveat that there was limited personal experience of the crops, it appears unlikely that wide-scale planting of biomass crops will give rise to substantial public concern in relation to their visual impact in the landscape

    Validation of a low field Rheo-NMR instrument and application to shear-induced migration of suspended non-colloidal particles in Couette flow.

    Get PDF
    Nuclear magnetic resonance rheology (Rheo-NMR) is a valuable tool for studying the transport of suspended non-colloidal particles, important in many commercial processes. The Rheo-NMR imaging technique directly and quantitatively measures fluid displacement as a function of radial position. However, the high field magnets typically used in these experiments are unsuitable for the industrial environment and significantly hinder the measurement of shear stress. We introduce a low field Rheo-NMR instrument (1H resonance frequency of 10.7MHz), which is portable and suitable as a process monitoring tool. This system is applied to the measurement of steady-state velocity profiles of a Newtonian carrier fluid suspending neutrally-buoyant non-colloidal particles at a range of concentrations. The large particle size (diameter >200μm) in the system studied requires a wide-gap Couette geometry and the local rheology was expected to be controlled by shear-induced particle migration. The low-field results are validated against high field Rheo-NMR measurements of consistent samples at matched shear rates. Additionally, it is demonstrated that existing models for particle migration fail to adequately describe the solid volume fractions measured in these systems, highlighting the need for improvement. The low field implementation of Rheo-NMR is complementary to shear stress rheology, such that the two techniques could be combined in a single instrument

    The Structure of the Vortex Liquid at the Surface of a Layered Superconductor

    Full text link
    A density-functional approach is used to calculate the inhomogeneous vortex density distribution in the flux liquid phase at the planar surface of a layered superconductor, where the external magnetic field is perpendicular to the superconducting layers and parallel to the surface. The interactions with image vortices are treated within a mean field approximation as a functional of the vortex density. Near the freezing transition strong vortex density fluctuations are found to persist far into the bulk liquid. We also calculate the height of the Bean-Livingston surface barrier.Comment: 8 pages, RevTeX, 2 figure

    A Robust Cross-Linking Strategy for Block Copolymer Worms Prepared via Polymerization-Induced Self-Assembly

    Get PDF
    A poly(glycerol monomethacrylate) (PGMA) chain transfer agent is chain-extended by reversible addition-fragmentation chain transfer (RAFT) statistical copolymerization of 2-hydroxypropyl methacrylate (HPMA) with glycidyl methacrylate (GlyMA) in concentrated aqueous solution via polymerization-induced self-assembly (PISA). A series of five free-standing worm gels is prepared by fixing the overall degree of polymerization of the core-forming block at 144 while varying its GlyMA content from 0 to 20 mol %. 1H NMR kinetics indicated that GlyMA is consumed much faster than HPMA, producing a GlyMA-rich sequence close to the PGMA stabilizer block. Temperature-dependent oscillatory rheological studies indicate that increasing the GlyMA content leads to progressively less thermoresponsive worm gels, with no degelation on cooling being observed for worms containing 20 mol % GlyMA. The epoxy groups in the GlyMA residues can be ring-opened using 3-aminopropyltriethoxysilane (APTES) in order to prepare core cross-linked worms via hydrolysis-condensation with the siloxane groups and/or hydroxyl groups on the HPMA residues. Perhaps surprisingly, 1H NMR analysis indicates that the epoxy-amine reaction and the intermolecular cross-linking occur on similar time scales. Cross-linking leads to stiffer worm gels that do not undergo degelation upon cooling. Dynamic light scattering studies and TEM analyses conducted on linear worms exposed to either methanol (a good solvent for both blocks) or anionic surfactant result in immediate worm dissociation. In contrast, cross-linked worms remain intact under such conditions, provided that the worm cores comprise at least 10 mol % GlyMA

    Why Pad\'e Approximants reduce the Renormalization-Scale dependence in QFT?

    Full text link
    We prove that in the limit where the beta function is dominated by the 1-loop contribution (``large beta_0 limit'') diagonal Pad\'e Approximants (PA's) of perturbative series become exactly renormalization scale (RS) independent. This symmetry suggest that diagonal PA's are resumming correctly contributions from higher order diagrams that are responsible for the renormalization of the coupling-constant. Non-diagonal PA's are not exactly invariant, but generally reduce the RS dependence as compared to partial-sums. In physical cases, higher-order corrections in the beta function break the symmetry softly, introducing a small scale and scheme dependence. We also compare the Pad\'e resummation with the BLM method. We find that in the large-N_f limit using the BLM scale is identical to resumming the series by a x[0/n]x[0/n] non-diagonal PA.Comment: 25 pages, LateX. Replaced so that the figures would fit into the page siz

    Cortical AAV-CNTF gene therapy combined with intraspinal mesenchymal precursor cell transplantation promotes functional and morphological outcomes after spinal cord injury in adult rats

    Get PDF
    Ciliary neurotrophic factor (CNTF) promotes survival and enhances long-distance regeneration of injured axons in parts of the adult CNS. Here we tested whether CNTF gene therapy targeting corticospinal neurons (CSN) in motor-related regions of the cerebral cortex promotes plasticity and regrowth of axons projecting into the female adult F344 rat spinal cord after moderate thoracic (T10) contusion injury (SCI). Cortical neurons were transduced with a bicistronic adeno-associated viral vector (AAV1) expressing a secretory form of CNTF coupled to mCHERRY (AAV-CNTFmCherry) or with control AAV only (AAV-GFP) two weeks prior to SCI. In some animals, viable or nonviable F344 rat mesenchymal precursor cells (rMPCs) were injected into the lesion site two weeks after SCI to modulate the inhibitory environment. Treatment with AAV-CNTFmCherry, as well as with AAV-CNTFmCherry combined with rMPCs, yielded functional improvements over AAV-GFP alone, as assessed by open-field and Ladderwalk analyses. Cyst size was significantly reduced in the AAV-CNTFmCherry plus viable rMPC treatment group. Cortical injections of biotinylated dextran amine (BDA) revealed more BDA-stained axons rostral and alongside cysts in the AAV-CNTFmCherry versus AAV-GFP groups. After AAV-CNTFmCherry treatments, many sprouting mCherry-immunopositive axons were seen rostral to the SCI, and axons were also occasionally found caudal to the injury site. These data suggest that CNTF has the potential to enhance corticospinal repair by transducing parent CNS populations
    • …
    corecore