10,061 research outputs found

    Multifractal Analysis of Packed Swiss Cheese Cosmologies

    Full text link
    The multifractal spectrum of various three-dimensional representations of Packed Swiss Cheese cosmologies in open, closed, and flat spaces are measured, and it is determined that the curvature of the space does not alter the associated fractal structure. These results are compared to observational data and simulated models of large scale galaxy clustering, to assess the viability of the PSC as a candidate for such structure formation. It is found that the PSC dimension spectra do not match those of observation, and possible solutions to this discrepancy are offered, including accounting for potential luminosity biasing effects. Various random and uniform sets are also analyzed to provide insight into the meaning of the multifractal spectrum as it relates to the observed scaling behaviors.Comment: 3 latex files, 18 ps figure

    Nano and Micro indentation studies of bulk zirconia and EB PVD TBCs

    Get PDF
    In order to model the erosion of a material it is necessary to know the material properties of both the impacting particles as well as the target. In the case of electron beam (EB) physical vapour deposited(PVD) thermal barrier coatings (TBCs) the properties of the columns as opposed to the coating as a whole are important. This is due to the fact that discrete erosion events are on a similar scale as the size of the individual columns. Thus nano* and micro* indentation were used to determine the hardness and the Young"s modulus of the columns. However, care had to be taken to ensure that it was the hardness of the columns that was being measured and not the coating as a whole. This paper discusses the differences in the results obtained when using the two different tests and relates them to the interactions between the indent and the columns of the EB PVD TBC microstructure. It was found that individual columns had a hardness of 14 GPa measured using nano indentation, while the hardness of the coating, using micro indentation decreased from 13 to 2.4 GPa as the indentation load increased from 0.1 to 3N. This decrease in hardness was attributed to the interaction between the indenter and a number of adjacent columns and the ability of the columns to move laterally under indentation

    The Improvement of Efficiency in the Numerical Computation of Orbit Trajectories

    Get PDF
    An analysis, system design, programming, and evaluation of results are described for numerical computation of orbit trajectories. Evaluation of generalized methods, interaction of different formulations for satellite motion, transformation of equations of motion and integrator loads, and development of efficient integrators are also considered

    Trajectory selection for the Mariner Jupiter/Saturn 1977 project

    Get PDF
    The use of decision analysis to facilitate a group decision-making problem in the selection of trajectories for the two spacecraft of the Mariner Jupiter/Saturn 1977 Project. A set of 32 candidate trajectory pairs was developed. Cardinal utility function values were assigned to the trajectory pairs, and the data and statistics derived from collective choice rules were used in selecting the science-preferred trajectory pair

    Surface activation of Concorde by Be-7

    Get PDF
    Activation analysis of two airframe components from the Concorde aircraft has identified the presence of Be-7, a nuclide found by other investigators that was deposited on the forward edge of the Long Duration Exposure Facility (LDEF) structure. The results of the Concorde analysis indicate that this phenomenon is very much a surface effect, and that the areal densities of the Be-7 are comparable to those found for LDEF. The collection of Be-7 by the aircraft must be greater than in the case of LDEF (since duration for which Concorde is accumulating the nuclide is shorter) and is of the order of 1.2 to 41 nuclei/sq cm(-)s(exp -1) depending upon assumptions made regarding the altitude at which collection becomes appreciable, and the efficiency of the process which removes the radionuclide

    Ablation debris control by means of closed thick film filtered water immersion

    Get PDF
    The performance of laser ablation generated debris control by means of open immersion techniques have been shown to be limited by flow surface ripple effects on the beam and the action of ablation plume pressure loss by splashing of the immersion fluid. To eradicate these issues a closed technique has been developed which ensured a controlled geometry for both the optical interfaces of the flowing liquid film. This had the action of preventing splashing, ensuring repeatable machining conditions and allowed for control of liquid flow velocity. To investigate the performance benefits of this closed immersion technique bisphenol A polycarbonate samples have been machined using filtered water at a number of flow velocities. The results demonstrate the efficacy of the closed immersion technique: a 93% decrease in debris is produced when machining under closed filtered water immersion; the average debris particle size becomes larger, with an equal proportion of small and medium sized debris being produced when laser machining under closed flowing filtered water immersion; large debris is shown to be displaced further by a given flow velocity than smaller debris, showing that the action of flow turbulence in the duct has more impact on smaller debris. Low flow velocities were found to be less effective at controlling the positional trend of deposition of laser ablation generated debris than high flow velocities; but, use of excessive flow velocities resulted in turbulence motivated deposition. This work is of interest to the laser micromachining community and may aide in the manufacture of 2.5D laser etched patterns covering large area wafers and could be applied to a range of wavelengths and laser types

    Delaunay Stability via Perturbations

    No full text
    We present an algorithm that takes as input a finite point set in Euclidean space, and performs a perturbation that guarantees that the Delaunay triangulation of the resulting perturbed point set has quantifiable stability with respect to the metric and the point positions. There is also a guarantee on the quality of the simplices: they cannot be too flat. The algorithm provides an alternative tool to the weighting or refinement methods to remove poorly shaped simplices in Delaunay triangulations of arbitrary dimension, but in addition it provides a guarantee of stability for the resulting triangulation
    • …
    corecore