15 research outputs found

    Production and Characterization of Poly(3-hydroxybutyrate) from <i>Halomonas boliviensis</i> LC1 Cultivated in Hydrolysates of Quinoa Stalks

    Get PDF
    The global production of fossil-based plastics has reached critical levels, and their substitution with bio-based polymers is an urgent requirement. Poly(3-hydroxybutyrate) (PHB) is a biopolymer that can be produced via microbial cultivation, but efficient microorganisms and low-cost substrates are required. Halomonas boliviensis LC1, a moderately halophilic bacterium, is an effective PHB producer, and hydrolysates of the residual stalks of quinoa (Chenopodium quinoa Willd.) can be considered a cheap source of sugars for microbial fermentation processes in quinoa-producing countries. In this study, H. boliviensis LC1 was adapted to a cellulosic hydrolysate of quinoa stalks obtained via acid-catalyzed hydrothermal pretreatment and enzymatic saccharification. The adapted strain was cultivated in hydrolysates and synthetic media, each of them with two different initial concentrations of glucose. Cell growth, glucose consumption, and PHB formation during cultivation were assessed. The cultivation results showed an initial lag in microbial growth and glucose consumption in the quinoa hydrolysates compared to cultivation in synthetic medium, but after 33 h, the values were comparable for all media. Cultivation in hydrolysates with an initial glucose concentration of 15 g/L resulted in a higher glucose consumption rate (0.15 g/(L h) vs. 0.14 g/(L h)) and volumetric productivity of PHB (14.02 mg/(L h) vs. 10.89 mg/(L h)) than cultivation in hydrolysates with 20 g/L as the initial glucose concentration. During most of the cultivation time, the PHB yield on initial glucose was higher for cultivation in synthetic medium than in hydrolysates. The produced PHBs were characterized using advanced analytical techniques, such as high-performance size-exclusion chromatography (HPSEC), Fourier transform infrared (FTIR) spectroscopy, 1H nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). HPSEC revealed that the molecular weight of PHB produced in the cellulosic hydrolysate was lower than that of PHB produced in synthetic medium. TGA showed higher thermal stability for PHB produced in synthetic medium than for that produced in the hydrolysate. The results of the other characterization techniques displayed comparable features for both PHB samples. The presented results show the feasibility of producing PHB from quinoa stalks with H. boliviensis

    Environmental Friendly Microbial Polymers, Polyhydroxyalkanoates (Phas) For Packaging And Biomedical Applications

    No full text

    Accumulation of High-Value Lipids in Single-Cell Microorganisms: A Mechanistic Approach and Future Perspectives

    No full text
    [Image: see text] In recent years attention has been focused on the utilization of microorganisms as alternatives for industrial and nutritional applications. Considerable research has been devoted to techniques for growth, extraction, and purification of high-value lipids for their use as biofuels and biosurfactants as well as high-value metabolites for nutrition and health. These successes argue that the elucidation of the mechanisms underlying the microbial biosynthesis of such molecules, which are far from being completely understood, now will yield spectacular opportunities for industrial scale biomolecular production. There are important additional questions to be solved to optimize the processing strategies to take advantage of the assets of microbial lipids. The present review describes the current state of knowledge regarding lipid biosynthesis, accumulation, and transport mechanisms present in single-cell organisms, specifically yeasts, microalgae, bacteria, and archaea. Similarities and differences in biochemical pathways and strategies of different microorganisms provide a diverse toolset to the expansion of biotechnologies for lipid production. This paper is intended to inspire a generation of lipid scientists to insights that will drive the biotechnologies of microbial production as uniquely enabling players of lipid biotherapeutics, biofuels, biomaterials, and other opportunity areas into the 21st century
    corecore